TY - GEN A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1052 KW - ecological genetics KW - ecological modelling KW - palaeoecology KW - plant ecology KW - climate change KW - introgression KW - temperature KW - treeline KW - vegetation KW - mitochondrial haplotypes KW - Siberian larch KW - larch species KW - range shifts KW - vegetation-climate feedbacks KW - ecosystems KW - impacts KW - dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468352 SN - 1866-8372 IS - 1052 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1020 KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484176 SN - 1866-8372 IS - 1020 ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data JF - Frontiers in Earth Science N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - https://doi.org/10.3389/feart.2020.559175 SN - 2296-6463 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Grimm-Seyfarth, Annegret A1 - Mihoub, Jean-Baptiste A1 - Henle, Klaus T1 - Functional traits determine the different effects of prey, predators, and climatic extremes on desert reptiles JF - Ecosphere : the magazine of the International Ecology University N2 - Terrestrial reptiles are particularly vulnerable to climate change. Their highest density and diversity can be found in hot drylands, ecosystems which demonstrate extreme climatic conditions. However, reptiles are not isolated systems but part of a large species assemblage with many trophic dependencies. While direct relations among climatic conditions, invertebrates, vegetation, or reptiles have already been explored, to our knowledge, species’ responses to direct and indirect pathways of multiple climatic and biotic factors and their interactions have rarely been examined comprehensively. We investigated direct and indirect effects of climatic and biotic parameters on the individual (body condition) and population level (occupancy) of eight abundant lizard species with different functional traits in an arid Australian lizard community using a 30‐yr multi‐trophic monitoring study. We used structural equation modeling to disentangle single and interactive effects. We then assessed whether species could be grouped into functional groups according to their functional traits and their responses to different parameters. We found that lizard species differed strongly in how they responded to climatic and biotic factors. However, the factors to which they responded seemed to be determined by their functional traits. While responses on body condition were determined by habitat, activity time, and prey, responses on occupancy were determined by habitat specialization, body size, and longevity. Our findings highlight the importance of indirect pathways through climatic and biotic interactions, which should be included into predictive models to increase accuracy when predicting species’ responses to climate change. Since one might never obtain all mechanistic pathways at the species level, we propose an approach of identifying relevant species traits that help grouping species into functional groups at different ecological levels, which could then be used for predictive modeling. KW - Australia KW - climate change KW - Gekkonidae KW - periodic flooding KW - Scincidae KW - species functional traits KW - species interactions KW - structural equation modeling Y1 - 2019 U6 - https://doi.org/10.1002/ecs2.2865 SN - 2150-8925 VL - 10 IS - 9 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea JF - Water N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2019 U6 - https://doi.org/10.3390/w11112377 SN - 2073-4441 VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schwarzer, Christian A1 - Joshi, Jasmin Radha T1 - Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs JF - Biological journal of the Linnean Society : a journal of evolution N2 - Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence. KW - biogeography KW - bog/mire plants KW - Carex limosa KW - climate change KW - glacial divergence KW - global change KW - leading/trailing edge KW - population differentiation KW - sexual/asexual reproduction Y1 - 2019 U6 - https://doi.org/10.1093/biolinnean/blz141 SN - 0024-4066 SN - 1095-8312 VL - 128 IS - 4 SP - 909 EP - 925 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Jongejans, Loeka Laura A1 - Strauss, Jens A1 - Lenz, Josefine A1 - Peterse, Francien A1 - Mangelsdorf, Kai A1 - Fuchs, Matthias A1 - Grosse, Guido T1 - Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - As Arctic warming continues and permafrost thaws, more soil and sedimentary organic matter (OM) will be decomposed in northern high latitudes. Still, uncertainties remain in the quality of the OM and the size of the organic carbon (OC) pools stored in different deposit types of permafrost landscapes. This study presents OM data from deep permafrost and lake deposits on the Baldwin Peninsula which is located in the southern portion of the continuous permafrost zone in west Alaska. Sediment samples from yedoma and drained thermokarst lake basin (DTLB) deposits as well as thermokarst lake sediments were analyzed for cryostratigraphical and biogeochemical parameters and their lipid biomarker composition to identify the below-ground OC pool size and OM quality of ice-rich permafrost on the Baldwin Peninsula. We provide the first detailed characterization of yedoma deposits on Baldwin Peninsula. We show that three-quarters of soil OC in the frozen deposits of the study region (total of 68 Mt) is stored in DTLB deposits (52 Mt) and one-quarter in the frozen yedoma deposits (16 Mt). The lake sediments contain a relatively small OC pool (4 Mt), but have the highest volumetric OC content (93 kgm(-3)) compared to the DTLB (35 kgm(-3)) and yedoma deposits (8 kgm(-3)), largely due to differences in the ground ice content. The biomarker analysis indicates that the OM in both yedoma and DTLB deposits is mainly of terrestrial origin. Nevertheless, the relatively high carbon preference index of plant leaf waxes in combination with a lack of a degradation trend with depth in the yedoma deposits indi-cates that OM stored in yedoma is less degraded than that stored in DTLB deposits. This suggests that OM in yedoma has a higher potential for decomposition upon thaw, despite the relatively small size of this pool. These findings show that the use of lipid biomarker analysis is valuable in the assessment of the potential future greenhouse gas emissions from thawing permafrost, especially because this area, close to the discontinuous permafrost boundary, is projected to thaw substantially within the 21st century. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 985 KW - northern seward peninsula KW - deep permafrost carbon KW - Laptev Sea region KW - Arctic Siberia KW - climate change KW - gas production KW - Lena delta KW - soils KW - release KW - tundra Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446250 SN - 1866-8372 IS - 20 SP - 6033 EP - 6048 ER - TY - GEN A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 965 KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438920 SN - 1866-8372 IS - 965 SP - 1510 EP - 1522 ER - TY - GEN A1 - Triet, Nguyen Van Khanh A1 - Dung, Nguyen Viet A1 - Merz, Bruno A1 - Apel, Heiko T1 - Towards risk-based flood management in highly productive paddy rice cultivation BT - concept development and application to the Mekong Delta T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flooding is an imminent natural hazard threatening most river deltas, e.g. the Mekong Delta. An appropriate flood management is thus required for a sustainable development of the often densely populated regions. Recently, the traditional event-based hazard control shifted towards a risk management approach in many regions, driven by intensive research leading to new legal regulation on flood management. However, a large-scale flood risk assessment does not exist for the Mekong Delta. Particularly, flood risk to paddy rice cultivation, the most important economic activity in the delta, has not been performed yet. Therefore, the present study was developed to provide the very first insight into delta-scale flood damages and risks to rice cultivation. The flood hazard was quantified by probabilistic flood hazard maps of the whole delta using a bivariate extreme value statistics, synthetic flood hydrographs, and a large-scale hydraulic model. The flood risk to paddy rice was then quantified considering cropping calendars, rice phenology, and harvest times based on a time series of enhanced vegetation index (EVI) derived from MODIS satellite data, and a published rice flood damage function. The proposed concept provided flood risk maps to paddy rice for the Mekong Delta in terms of expected annual damage. The presented concept can be used as a blueprint for regions facing similar problems due to its generic approach. Furthermore, the changes in flood risk to paddy rice caused by changes in land use currently under discussion in the Mekong Delta were estimated. Two land-use scenarios either intensifying or reducing rice cropping were considered, and the changes in risk were presented in spatially explicit flood risk maps. The basic risk maps could serve as guidance for the authorities to develop spatially explicit flood management and mitigation plans for the delta. The land-use change risk maps could further be used for adaptive risk management plans and as a basis for a cost-benefit of the discussed land-use change scenarios. Additionally, the damage and risks maps may support the recently initiated agricultural insurance programme in Vietnam. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 931 KW - climate change KW - hazard analysis KW - sea level KW - Tho city KW - Vietnam KW - damage KW - uncertainty KW - models KW - floodplains KW - hydrology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446032 SN - 1866-8372 IS - 931 SP - 2859 EP - 2876 ER - TY - JOUR A1 - Krol, Maarten A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil JF - Journal of hydrology N2 - Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved. KW - integrated modelling KW - integrated river basin management KW - water resources management KW - semi-arid hydrology KW - climate change Y1 - 2006 U6 - https://doi.org/10.1016/j.jhydrol.2005.12.021 SN - 0022-1694 VL - 328 IS - 3-4 SP - 417 EP - 431 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Drewes, Julia A1 - Moreiras, Stella A1 - Korup, Oliver T1 - Permafrost activity and atmospheric warming in the Argentinian Andes JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved. KW - rock glacier KW - Argentina KW - permafrost KW - climate change Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2018.09.005 SN - 0169-555X SN - 1872-695X VL - 323 SP - 13 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Colombo, Stefanie M. A1 - Wacker, Alexander A1 - Parrish, Christopher C. A1 - Kainz, Martin J. A1 - Arts, Michael T. T1 - A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems JF - Environmental reviews = Dossiers environnement N2 - Polyunsaturated fatty acids (PUFA), especially long-chain (i.e., >= 20 carbons) polyunsaturated fatty acids (LC-PUFA), are fundamental to the health and survival of marine and terrestrial organisms. Therefore, it is imperative that we gain a better understanding of their origin, abundance, and transfer between and within these ecosystems. We evaluated the natural variation in PUFA distribution and abundance that exists between and within these ecosystems by amassing and analyzing, using multivariate and analysis of variance (ANOVA) methods, >3000 fatty acid (FA) profiles from marine and terrestrial organisms. There was a clear dichotomy in LC-PUFA abundance between organisms in marine and terrestrial ecosystems, mainly driven by the C-18 PUFA in terrestrial organisms and omega-3 (n-3) LC-PUFA in marine organisms. The PUFA content of an organism depended on both its biome (marine vs terrestrial) and taxonomic group. Within the marine biome, the PUFA content varied among taxonomic groups. PUFA content of marine organisms was dependent on both geographic zone (i.e., latitude, and thus broadly related to temperature) and trophic level (a function of diet). The contents of n-3 LC-PUFA were higher in polar and temperate marine organisms than those from the tropics. Therefore, we conclude that, on a per capita basis, high latitude marine organisms provide a disproportionately large global share of these essential nutrients to consumers, including terrestrial predators. Our analysis also hints at how climate change, and other anthropogenic stressors, might act to negatively impact the global distribution and abundance of n-3 LC-PUFA within marine ecosystems and on the terrestrial consumers that depend on these subsidies. KW - climate change KW - food webs KW - omega-3 KW - polyunsaturated fatty acids KW - trophic ecology Y1 - 2017 U6 - https://doi.org/10.1139/er-2016-0062 SN - 1208-6053 SN - 1181-8700 VL - 25 SP - 163 EP - 174 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Markovic, Danijela A1 - Carrizo, Savrina F. A1 - Kaercher, Oskar A1 - Walz, Ariane A1 - David, Jonathan N. W. T1 - Vulnerability of European freshwater catchments to climate change JF - Global change biology N2 - Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. KW - catchment connectivity KW - climate change KW - exposure KW - freshwater biodiversity KW - gap analysis KW - resilience KW - sensitivity KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13657 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 3567 EP - 3580 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Auffhammer, Maximilian T1 - North-south polarization of European electricity consumption under future warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigationin line with the Paris agreementto unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (similar to 3 to similar to 7% for Portugal and Spain) and significant decreases in northern Europe (similar to-6 to similar to-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity. KW - electricity consumption KW - peak load KW - climate change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1073/pnas.1704339114 SN - 0027-8424 VL - 114 SP - E7910 EP - E7918 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Wenz, Leonie A1 - Kalkuhl, Matthias A1 - Steckel, Jan Christoph A1 - Creutzig, Felix T1 - Teleconnected food supply shocks JF - Environmental research letters N2 - The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks. KW - food security KW - trade shocks KW - vulnerability KW - climate change KW - teleconnections Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/3/035007 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kellermann, Patric A1 - Bubeck, Philip A1 - Kundela, Guenther A1 - Dosio, Alessandro A1 - Thieken, Annegret T1 - Frequency Analysis of Critical Meteorological Conditions in a Changing ClimateAssessing Future Implications for Railway Transportation in Austria JF - Climate : open access journal N2 - Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite. KW - climate change KW - critical meteorological condition KW - frequency analysis KW - natural hazard management KW - railway transportation Y1 - 2016 U6 - https://doi.org/10.3390/cli4020025 SN - 2225-1154 VL - 4 SP - 914 EP - 931 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schneider, Birgit T1 - Burning worlds of cartography: a critical approach to climate cosmograms of the Anthropocene JF - Geo : geography and environment N2 - Climate science today makes use of a variety of red globes to explore and communicate findings. These transform the iconography which informs this image: the idealised, even mythical vision of the blue, vulnerable and perfect marble is impaired by the application of the colours yellow and red. Since only predictions that employ a lot of red seem to exist, spectators are confronted with the message that the future Earth that might turn out as envisaged here is undesirable. Here intuitively powerful narrations of the end of the world may connect. By employing methods of art history and visual analysis, and building on examples from current Intergovernmental Panel on Climate Change reports and future scenario maps, this article explores how burning world images bear - intentionally or not - elements of horror and shock. My question explored here is as follows: should 'burning world' images be understood as a new and powerful cosmology? KW - cartography KW - visualisation KW - climate change KW - whole Earth images Y1 - 2016 U6 - https://doi.org/10.1002/geo2.27 SN - 2054-4049 VL - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Geiger, Tobias A1 - Frieler, Katja A1 - Levermann, Anders T1 - High-income does not protect against hurricane losses JF - Environmental research letters N2 - Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation. KW - climate change KW - tropical cyclones KW - damage KW - meteorological extremes KW - vulnerability Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/8/084012 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Di Capua, Giorgia A1 - Coumou, Dim T1 - Changes in meandering of the Northern Hemisphere circulation JF - Environmental research letters N2 - Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979-2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes. KW - Rossby waves KW - climate change KW - extreme events KW - mid-latitudes flow Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/9/094028 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER -