TY - JOUR A1 - Gerhardt, Matthias A1 - Ecke, Mary A1 - Walz, Michael A1 - Stengl, Andreas A1 - Beta, Carsten A1 - Gerisch, Günther T1 - Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state JF - Journal of cell science N2 - The membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion. In these cells, actin waves are coupled to the front and back of phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-rich bands that have a finite width. These composite waves propagate across the plasma membrane of the giant cells with undiminished velocity. After any disturbance, the bands of PIP3 return to their intrinsic width. Upon collision, the waves locally annihilate each other and change direction; at the cell border they are either extinguished or reflected. Accordingly, expanding areas of progressing PIP3 synthesis become unstable beyond a critical radius, their center switching from a front-like to a tail-like state. Our data suggest that PIP3 patterns in normal-sized cells are segments of the self-organizing patterns that evolve in giant cells. KW - Actin waves KW - PIP3 signals KW - Excitable systems KW - Cell polarity KW - Cell fusion Y1 - 2014 U6 - https://doi.org/10.1242/jcs.156000 SN - 0021-9533 SN - 1477-9137 VL - 127 IS - 20 SP - 4507 EP - 4517 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Makarava, Natallia A1 - Menz, Stephan A1 - Theves, Matthias A1 - Huisinga, Wilhelm A1 - Beta, Carsten A1 - Holschneider, Matthias T1 - Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Amoebae explore their environment in a random way, unless external cues like, e. g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevE.90.042703 SN - 1539-3755 SN - 1550-2376 VL - 90 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gerhardt, Matthias A1 - Walz, Michael A1 - Beta, Carsten T1 - Signaling in chemotactic amoebae remains spatially confined to stimulated membrane regions JF - Journal of cell science N2 - Recent work has demonstrated that the receptor-mediated signaling system in chemotactic amoeboid cells shows typical properties of an excitable system. Here, we delivered spatially confined stimuli of the chemoattractant cAMP to the membrane of differentiated Dictyostelium discoideum cells to investigate whether localized receptor stimuli can induce the spreading of excitable waves in the G-protein-dependent signal transduction system. By imaging the spatiotemporal dynamics of fluorescent markers for phosphatidylinositol (3,4,5)-trisphosphate (PIP3), PTEN and filamentous actin, we observed that the activity of the signaling pathway remained spatially confined to the stimulated membrane region. Neighboring parts of the membrane were not excited and no receptor-initiated spatial spreading of excitation waves was observed. To generate localized cAMP stimuli, either particles that carried covalently bound cAMP molecules on their surface were brought into contact with the cell or a patch of the cell membrane was aspirated into a glass micropipette to shield this patch against freely diffusing cAMP molecules in the surrounding medium. Additionally, the binding site of the cAMP receptor was probed with different surface-immobilized cAMP molecules, confirming results from earlier ligand-binding studies. KW - Signal transduction KW - Excitable dynamics KW - Dictyostelium KW - cAMP KW - PIP3 KW - PIP2 KW - PI3K KW - PTEN KW - Micropipette aspiration KW - cAMP receptor KW - Patch clamp Y1 - 2014 U6 - https://doi.org/10.1242/jcs.161133 SN - 0021-9533 SN - 1477-9137 VL - 127 IS - 23 SP - 5115 EP - 5125 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Nagel, Oliver A1 - Guven, Can A1 - Theves, Matthias A1 - Driscoll, Meghan A1 - Losert, Wolfgang A1 - Beta, Carsten T1 - Geometry-driven polarity in motile amoeboid cells JF - PLoS one N2 - Motile eukaryotic cells, such as leukocytes, cancer cells, and amoeba, typically move inside the narrow interstitial spacings of tissue or soil. While most of our knowledge of actin-driven eukaryotic motility was obtained from cells that move on planar open surfaces, recent work has demonstrated that confinement can lead to strongly altered motile behavior. Here, we report experimental evidence that motile amoeboid cells undergo a spontaneous symmetry breaking in confined interstitial spaces. Inside narrow channels, the cells switch to a highly persistent, unidirectional mode of motion, moving at a constant speed along the channel. They remain in contact with the two opposing channel side walls and alternate protrusions of their leading edge near each wall. Their actin cytoskeleton exhibits a characteristic arrangement that is dominated by dense, stationary actin foci at the side walls, in conjunction with less dense dynamic regions at the leading edge. Our experimental findings can be explained based on an excitable network model that accounts for the confinement-induced symmetry breaking and correctly recovers the spatio-temporal pattern of protrusions at the leading edge. Since motile cells typically live in the narrow interstitial spacings of tissue or soil, we expect that the geometry-driven polarity we report here plays an important role for movement of cells in their natural environment. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0113382 SN - 1932-6203 VL - 9 IS - 12 PB - PLoS CY - San Fransisco ER -