TY - JOUR A1 - Shin, Jaeoh A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf ED - Metzler, Ralf T1 - Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size JF - Soft Matter N2 - The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping–unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions. KW - gene-regulation kinetics KW - physiological consequences KW - spatial-organization KW - anomalous diffusion KW - folding kinetics KW - living cells KW - dna coiling KW - in-vitro KW - dynamics KW - mixtures Y1 - 2014 SN - 1744-683X SP - 472 EP - 488 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Goychuk, Igor A. A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion T2 - Physical Chemistry Chemical Physics N2 - The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 181 KW - royal soc chemistry KW - thomas graham house KW - science park KW - milton rd KW - cambridge cb4 0wf KW - cambs KW - england Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76478 SP - 16524 EP - 16535 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Goychuk, Igor A. A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion JF - Physical Chemistry Chemical Physics N2 - The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient. KW - royal soc chemistry KW - thomas graham house KW - science park KW - milton rd KW - cambridge cb4 0wf KW - cambs KW - england Y1 - 2014 SN - 1463-9076 IS - 16 SP - 16524 EP - 16535 PB - the Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 180 KW - single-particle tracking KW - living cells KW - random-walks KW - subdiffusion KW - dynamics KW - nonergodicity KW - coefficients KW - transport KW - membrane KW - behavior Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76302 SP - 15811 EP - 15817 ER - TY - JOUR A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion JF - Physical chemistry, chemical physics : PCCP N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used. KW - single-particle tracking KW - living cells KW - random-walks KW - subdiffusion KW - dynamics KW - nonergodicity KW - coefficients KW - transport KW - membrane KW - behavior Y1 - 2014 U6 - https://doi.org/10.1039/C4CP02019G VL - 30 IS - 16 SP - 15811 EP - 15817 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Palyulin, Vladimir V. A1 - Ala-Nissila, Tapio A1 - Metzler, Ralf T1 - Polymer translocation: the first two decades and the recent diversification N2 - Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous–infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 179 KW - solid-state nanopores KW - single-stranded-dna KW - posttranslational protein translocation KW - anomalous diffusion KW - monte-carlo KW - structured polynucleotides KW - dynamics simulation KW - equation approach KW - osmotic-pressure KW - membrane channel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76287 SP - 9016 EP - 9037 ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Ala-Nissila, Tapio A1 - Metzler, Ralf ED - Metzler, Ralf T1 - Polymer translocation: the first two decades and the recent diversification JF - Soft matter N2 - Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous–infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis. KW - solid-state nanopores KW - single-stranded-dna KW - posttranslational protein translocation KW - anomalous diffusion KW - monte-carlo KW - structured polynucleotides KW - dynamics simulation KW - equation approach KW - osmotic-pressure KW - membrane channel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76266 SN - 1744-683X VL - 45 IS - 10 SP - 9016 EP - 9037 PB - the Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Bauer, Maximilian A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick–Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107]. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 177 KW - anomalous diffusion KW - fractional dynamics KW - transport KW - nonergodicity KW - coefficient Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76199 ER - TY - JOUR A1 - Bauer, Maximilian A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick–Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107]. KW - anomalous diffusion KW - fractional dynamics KW - transport KW - nonergodicity KW - coefficient Y1 - 2014 U6 - https://doi.org/10.1039/C3CP55160A SN - 1463-9084 SN - 1463-9076 VL - 16 IS - 13 SP - 6118 EP - 6128 PB - RSC Publications CY - Cambridge ER - TY - GEN A1 - Metzler, Ralf A1 - Jeon, Jae-Hyung A1 - Cherstvy, Andrey G. A1 - Barkai, Eli T1 - Anomalous diffusion models and their properties BT - non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking N2 - Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 174 KW - Fokker-Planck equations KW - flight search patterns KW - fluctuation-dissipation theorem KW - fluorescence photobleaching recovery KW - fractional dynamics approach KW - intermittent chaotic systems KW - levy flights KW - photon-counting statistics KW - time random-walks KW - weak ergodicity breaking Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74448 SP - 24128 EP - 24164 ER - TY - JOUR A1 - Metzler, Ralf A1 - Jeon, Jae-Hyung A1 - Cherstvy, Andrey G. A1 - Barkai, Eli T1 - Anomalous diffusion models and their properties BT - non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking JF - physical chemistry, chemical physics : PCCP N2 - Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion. KW - intermittent chaotic systems KW - Fokker-Planck equations KW - time random-walks KW - fluorescence photobleaching recovery KW - fluctuation-dissipation theorem KW - fractional dynamics approach KW - photon-counting statistics KW - weak ergodicity breaking KW - flight search patterns KW - levy flights Y1 - 2014 U6 - https://doi.org/10.1039/c4cp03465a SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 24128 EP - 24164 ER - TY - GEN A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 168 KW - adenoassociated virus KW - anomalous diffusion KW - cytoplasm KW - endosomal escape KW - escherichia-coli KW - infection pathway KW - intracellular-transport KW - living cells KW - models KW - trafficking Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74021 IS - 168 SP - 1591 EP - 1601 ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity JF - Soft matter N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. KW - anomalous diffusion KW - intracellular-transport KW - adenoassociated virus KW - infection pathway KW - escherichia-coli KW - endosomal escape KW - living cells KW - trafficking KW - cytoplasm KW - models Y1 - 2014 U6 - https://doi.org/10.1039/c3sm52846d SN - 2046-2069 VL - 2014 IS - 10 SP - 1591 EP - 1601 PB - Royal Society of Chemistry ER -