TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Rector, Michael V. A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Load on Three-Dimensional Segmental Trunk Kinematics in One-Handed Lifting: A Pilot Study JF - Journal of applied biomechanics N2 - Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk’s mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis. KW - trunk motion KW - kinematic trunk model KW - everyday task KW - MiSpEx* Y1 - 2016 U6 - https://doi.org/10.1123/jab.2015-0227 SN - 1065-8483 SN - 1543-2688 VL - 32 SP - 520 EP - 525 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Intziegianni, Konstantina A1 - Cassel, Michael A1 - Rauf, S. A1 - White, S. A1 - Rector, Michael V. A1 - Kaplick, Hannes A1 - Wahmkow, Gunnar A1 - Kratzenstein, S. A1 - Mayer, Frank T1 - Influence of Age and Pathology on Achilles Tendon Properties During a Single-leg Jump JF - International journal of sports medicine N2 - Prevalence of Achilles tendinopathy increases with age leading to a weaker tendon with predisposition to rupture. Conclusive evidence of the influence of age and pathology on Achilles tendon (AT) properties remains limited, as previous studies are based on standardized isometric conditions. The study investigates the influence of age and pathology on AT properties during single-leg vertical jump (SLVJ). 10 children (C), 10 asymptomatic adults (A), and 10 tendinopathic patients (T) were included. AT elongation [mm] from rest to maximal displacement during a SLVJ on a force-plate was sonographically assessed. AT compliance [mm/N]) and strain [%] was calculated by dividing elongation by peak ground reaction force [N] and length, respectively. One-way ANOVA followed by Bonferroni post-hoc correction (=0.05) were used to compare C with A and A with T. AT elongation (p=0.004), compliance (p=0.001), and strain were found to be statistically significant higher in C (27 +/- 3mm, 0.026 +/- 0.006[mm/N], 13 +/- 2%) compared to A (21 +/- 4mm, 0.017 +/- 0.005[mm/N], 10 +/- 2%). No statistically significant differences (p0.05) was found between A and T (25 +/- 5mm, 0.019 +/- 0.004[mm/N], 12 +/- 3%). During SLVJ, tendon responded differently in regards to age and pathology with children having the most compliant AT. Higher compliance found in healthy tendons might be considered as a protective factor against load-related injuries. KW - children KW - tendinopathy KW - compliance KW - dynamic KW - ultrasonography Y1 - 2016 U6 - https://doi.org/10.1055/s-0042-108198 SN - 0172-4622 SN - 1439-3964 VL - 37 SP - 973 EP - 978 PB - Thieme CY - Stuttgart ER -