TY - JOUR A1 - Couturier, Jean-Philippe A1 - Wischerhoff, Erik A1 - Bernin, Robert A1 - Hettrich, Cornelia A1 - Koetz, Joachim A1 - Sutterlin, Martin A1 - Tiersch, Brigitte A1 - Laschewsky, Andre T1 - Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols JF - Langmuir N2 - Responsive inverse opal hydrogels functionalized by boroxole moieties were synthesized and explored as sensor platforms for various low molar mass as well as polymeric diols and polyols, including saccharides, glycopolymers and catechols, by exploiting the diol induced modulation of their structural color. The underlying thermoresponsive water-soluble copolymers and hydrogels exhibit a coil-to-globule or volume phase transition, respectively, of the LCST-type. They were prepared from oligoethylene oxide methacrylate (macro)monomers and functionalized via copolymerization to bear benzoboroxole moieties. The resulting copolymers represent weak polyacids, which can bind specifically to diols within an appropriate pH window. Due to the resulting modulation of the overall hydrophilicity of the systems and the consequent shift of their phase transition temperature, the usefulness of such systems for indicating the presence of catechols, saccharides, and glycopolymers was studied, exploiting the diol/polyol induced shifts of the soluble polymers’ cloud point, or the induced changes of the hydrogels’ swelling. In particular, the increased acidity of benzoboroxoles compared to standard phenylboronic acids allowed performing the studies in PBS buffer (phosphate buffered saline) at the physiologically relevant pH of 7.4. The inverse opals constructed of these thermo- and analyte-responsive hydrogels enabled following the binding of specific diols by the induced shift of the optical stop band. Their highly porous structure enabled the facile and specific optical detection of not only low molar mass but also of high molar mass diol/polyol analytes such as glycopolymers. Accordingly, such thermoresponsive inverse opal systems functionalized with recognition units represent attractive and promising platforms for the facile sensing of even rather big analytes by simple optical means, or even by the bare eye. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b00803 SN - 0743-7463 VL - 32 SP - 4333 EP - 4345 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Secker, Christian A1 - Voelkel, Antje A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Schlaad, Helmut T1 - Thermo-Induced Aggregation and Crystallization of Block Copolypeptoids in Water JF - Macromolecules : a publication of the American Chemical Society N2 - Block copolypeptoids comprising a thermosensitive, crystallizable poly(N-(n-propyl)glycine) block and a watersoluble poly(N-methylglycine) block, P70My (y = 23, 42, 76, 153, and 290), were synthesized bY ring-opening polymerization of the corresponding N-alkylglycine N-carboxyanhydrides (NCAs) and examined according to their thermo-induced aggregation and crystallization in water by turbidimetty, micro-differential scanning calorimetry (micro-DSC); cryogenic scanning electron microscopy (cryo-SEM), analytical ultracentrifugation (AUC), and static light scattering (SLS). At a temperature above the cloud point temperature, the initially formed micellar aggregates started to crystallize and grow into larger complex assemblies of about 100-500 nm, exhibiting flower-like (P70M23), ellipsoidal (P70M42 and P70M72) or irregular shapes (P70M153 and.P70M290). Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.5b02481 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 979 EP - 985 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vargas-Ruiz, Salome A1 - Schulreich, Christoph A1 - Kostevic, Angelika A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Kakorin, Sergej A1 - von Klitzing, Regine A1 - Jung, Martin A1 - Hellweg, Thomas A1 - Wellert, Stefan T1 - Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions JF - Journal of colloid and interface science N2 - In the present contribution, we evaluate the efficiency of eco-friendly microemulsions to decontaminate solid surfaces by monitoring the extraction of non-toxic simulants of sulfur mustard out of model surfaces. The extraction process of the non-toxic simulants has been monitored by means of spectroscopic and chromatographic techniques. The kinetics of the removal process was analyzed by different empirical models. Based on the analysis of the kinetics, we can assess the influence of the amounts of oil and water and the microemulsion structure on the extraction process. (C) 2016 Elsevier Inc. All rights reserved. KW - Microemulsions KW - Decontamination KW - Surface removal KW - Kinetic analysis KW - Extraction Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.03.006 SN - 0021-9797 SN - 1095-7103 VL - 471 SP - 118 EP - 126 PB - Elsevier CY - San Diego ER -