TY - JOUR A1 - Kumph, Muir A1 - Henkel, Carsten A1 - Rabl, Peter A1 - Brownnutt, Michael A1 - Blatt, Rainer T1 - Electric-field noise above a thin dielectric layer on metal electrodes JF - NEW JOURNAL OF PHYSICS N2 - The electric-field noise above a layered structure composed of a planar metal electrode covered by a thin dielectric is evaluated and it is found that the dielectric film considerably increases the noise level, in proportion to its thickness. Importantly, even a thin (mono) layer of a low-loss dielectric can enhance the noise level by several orders of magnitude compared to the noise above a bare metal. Close to this layered surface, the power spectral density of the electric field varies with the inverse fourth power of the distance to the surface, rather than with the inverse square, as it would above a bare metal surface. Furthermore, compared to a clean metal, where the noise spectrum does not vary with frequency (in the radio-wave and microwave bands), the dielectric layer can generate electricfield noise which scales in inverse proportion to the frequency. For various realistic scenarios, the noise levels predicted from this model are comparable to those observed in trapped-ion experiments. Thus, these findings are of particular importance for the understanding and mitigation of unwanted heating and decoherence in miniaturized ion traps. KW - ion trap KW - electric field noise KW - fluctuation dissipation Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023020 SN - 1367-2630 VL - 18 SP - 1125 EP - 1136 PB - IOP Publ. Ltd. CY - Bristol ER -