TY - JOUR A1 - Steigert, Alexander A1 - Kojda, Sandrino Danny A1 - Ibaceta-Jaña, Josefa Fernanda A1 - Abou-Ras, Daniel A1 - Gunder, René A1 - Alktash, Nivin A1 - Habicht, Klaus A1 - Wagner, Markus Raphael A1 - Klenk, Reiner A1 - Raoux, Simone A1 - Szyszka, Bernd A1 - Lauermann, Iver A1 - Muydinov, Ruslan T1 - Water-assisted crystallization of amorphous indium zinc oxide films JF - Materials today. Communications N2 - Transparent conductive materials based on indium oxide remain yet irreplaceable in various optoelectronic applications. Amorphous oxides appear especially attractive for technology as they are isotropic, demonstrate relatively high electron mobility and can be processed at low temperatures. Among them is indium zinc oxide (IZO) with a large zinc content that is crucial for keeping the amorphous state but redundant for the doping. In this work we investigated water-free and water containing IZO films obtained by radio frequency sputtering. The correlation between temperature driven changes of the chemical state, the optical and electrical properties as well as the progression of crystallization was in focus. Such characterization methods as: scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, temperature dependent Hall-effect measurements and others were applied. Temperature dependent electrical properties of amorphous IZO and IZO:H2O films were found to evolve similarly. Based on our experience in In2O3:H2O (In2O3:H or IOH) we proposed an explanation for the changes observed. Water admixture was found to decrease crystallization temperature of IZO significantly from similar to 550 degrees C to similar to 280 degrees C. Herewith, the presence and concentration of water and/or hydroxyls was found to determine Zn distribution in the film. In particular, Zn enrichment was detected at the film's surface respective to the high water and/or hydroxyl amount. Raman spectra revealed a two-dimensional crystallization of w-ZnO which precedes regardless water presence an extensive In2O3 crystallization. An abrupt loss of electron mobility as a result of crystallization was attributed to the formation of ZnO interlayer on grain boundaries. KW - IZO KW - Thin films KW - TCOs KW - Crystallization KW - Water-assisted crystallization Y1 - 2022 U6 - https://doi.org/10.1016/j.mtcomm.2022.103213 SN - 2352-4928 VL - 31 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Steppa, Constantin Beverly T1 - Modelling the galactic population of very-high-energy gamma-ray sources T1 - Modellierung der Population galaktischer Quellen von sehr hochenergetischer Gammastrahlung N2 - The current generation of ground-based instruments has rapidly extended the limits of the range accessible to us with very-high-energy (VHE) gamma-rays, and more than a hundred sources have now been detected in the Milky Way. These sources represent only the tip of the iceberg, but their number has reached a level that allows population studies. In this work, a model of the global population of VHE gamma-ray sources based on the most comprehensive census of Galactic sources in this energy regime, the H.E.S.S. Galactic plane survey (HGPS), will be presented. A population synthesis approach was followed in the construction of the model. Particular attention was paid to correcting for the strong observational bias inherent in the sample of detected sources. The methods developed for estimating the model parameters have been validated with extensive Monte Carlo simulations and will be shown to provide unbiased estimates of the model parameters. With these methods, five models for different spatial distributions of sources have been constructed. To test the validity of these models, their predictions for the composition of sources within the sensitivity range of the HGPS are compared with the observed sample. With one exception, similar results are obtained for all spatial distributions, showing that the observed longitude profile and the source distribution over photon flux are in fair agreement with observation. Regarding the latitude profile and the source distribution over angular extent, it becomes apparent that the model needs to be further adjusted to bring its predictions in agreement with observation. Based on the model, predictions of the global properties of the Galactic population of VHE gamma-ray sources and the prospects of the Cherenkov Telescope Array (CTA) will be presented. CTA will significantly increase our knowledge of VHE gamma-ray sources by lowering the threshold for source detection, primarily through a larger detection area compared to current-generation instruments. In ground-based gamma-ray astronomy, the sensitivity of an instrument depends strongly, in addition to the detection area, on the ability to distinguish images of air showers produced by gamma-rays from those produced by cosmic rays, which are a strong background. This means that the number of detectable sources depends on the background rejection algorithm used and therefore may also be increased by improving the performance of such algorithms. In this context, in addition to the population model, this work presents a study on the application of deep-learning techniques to the task of gamma-hadron separation in the analysis of data from ground-based gamma-ray instruments. Based on a systematic survey of different neural-network architectures, it is shown that robust classifiers can be constructed with competitive performance compared to the best existing algorithms. Despite the broad coverage of neural-network architectures discussed, only part of the potential offered by the application of deep-learning techniques to the analysis of gamma-ray data is exploited in the context of this study. Nevertheless, it provides an important basis for further research on this topic. N2 - Die aktuelle Generation bodengestützter Instrumente hat die Grenzen des uns mit sehr hoch-energetischer (very-high-energy, VHE) Gammastrahlung zugänglichen Bereichs rasch erweitert, so dass inzwischen bereits mehr als hundert Quellen in der Milchstraße entdeckt wurden. Diese Quellen repräsentieren zwar nur die Spitze des Eisbergs, doch ihre Anzahl hat ein Niveau erreicht, das Populationsstudien ermöglicht. In dieser Arbeit wird ein Modell der globalen Population von VHE Gammastrahlungsquellen vorgestellt, das auf den umfassendsten Zensus galaktischer Quellen in diesem Energiebereich, dem H.E.S.S. Galactic plane survey (HGPS), beruht. Bei der Erstellung des Modells wurde ein Populationssynthese-Ansatz verfolgt. Besonderes Augenmerk wurde auf die Korrektur der starken Beobachtungsverzerrung gelegt, die der Stichprobe detektierter Quellen innewohnt. Die für die Schätzung der Modellparameter entwickelten Methoden wurden mit umfangreichen Monte-Carlo-Simulationen validiert und es wird gezeigt, dass sie akkurate Schätzungen der Modelparameter ermöglichen. Mit diesen Methoden wurden fünf Modelle für verschiedene räumliche Verteilungen von Quellen erstellt. Um die Gültigkeit dieser Modelle zu prüfen, werden ihre Vorhersagen für die Zusammensetzung der Quellen innerhalb des Sensitivitätsbereichs des HGPS mit der beobachteten Stichprobe verglichen. Mit einer Ausnahme werden für alle räumlichen Verteilungen ähnliche Ergebnisse erzielt, die zeigen, dass das beobachtete Longitudenprofil und die Quellenverteilung über den Photonenfluss gut mit der Beobachtung übereinstimmen. Bezüglich des Latitudenprofils und der Quellenverteilung über die Winkelausdehnung zeigt sich, dass das Modell weiter angepasst werden muss, um dessen Vorhersagen mit den Beobachtungen in Einklang zu bringen. Auf der Grundlage des Modells werden Vorhersagen über die globalen Eigenschaften der galaktischen Population von VHE Gammastrahlungsquellen und die Perspektiven des Cherenkov Telescope Array (CTA) vorgestellt. CTA wird unser Wissen über VHE Gammastrahlungsquellen erheblich erweitern, indem es die Detektionsschwelle für die Quellen senkt, vor allem durch einer im Vergleich zu Instrumenten der aktuellen Generation größeren Detektionsfläche. In der bodengebundenen Gammastrahlenastronomie hängt die Empfindlichkeit eines Instruments neben der Detektionsfläche jedoch auch stark von der Fähigkeit ab, Bilder von Luftschauern, die durch Gammastrahlen erzeugt werden, von denen zu unterscheiden, die durch kosmische Strahlung erzeugt werden und einen starken Hintergrund darstellen. Dies bedeutet, dass die Anzahl der detektierbaren Quellen von dem verwendeten Algorithmus zur Hintergrundunterdrückung abhängt und daher möglicherweise auch durch eine Verbesserung der Leistung solcher Algorithmen erhöht werden kann. In diesem Zusammenhang wird in dieser Arbeit zusätzlich zum Populationsmodell eine Studie über die Anwendung von Deep-Learning-Techniken für die Aufgabe der Gamma-Hadron-Trennung bei der Analyse von Daten von bodengestützten Gammastrahleninstrumenten vorgestellt. Auf der Grundlage einer systematischen Untersuchung verschiedener neuronaler Netzwerkarchitekturen wird gezeigt, dass robuste Klassifikatoren konstruiert werden können, die im Vergleich zu den besten bestehenden Algorithmen eine konkurrenzfähige Leistung aufweisen. Trotz des Umfangs der diskutierten neuronalen Netzwerkarchitekturen wird im Rahmen dieser Studie nur ein Teil des Potenzials ausgeschöpft, das die Anwendung von Deep-Learning-Techniken für die Analyse von Daten in der Gammaastronomie bietet. Dennoch bietet sie eine wichtige Grundlage für weitere Forschungen zu diesem Thema. KW - gamma astronomy KW - galactic population KW - very-high energy KW - Gammaastronomie KW - galaktische Population KW - sehr hohe Energien Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549478 ER - TY - JOUR A1 - Stojkoski, Viktor A1 - Jolakoski, Petar A1 - Pal, Arnab A1 - Sandev, Trifce A1 - Kocarev, Ljupco A1 - Metzler, Ralf T1 - Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity JF - Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences N2 - We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and income mobility, the feasibility of an individual to change their position in the income rankings. For this purpose, we use the properties of an established model for income growth that includes 'resetting' as a stabilizing force to ensure stationary dynamics. We find that the dynamics of inequality is regime-dependent: it may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodicity. Mobility measures, conversely, are always stable over time, but suggest that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the income share of the top earners in the USA, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterizes inequality and immobility. Our results can serve as a simple rationale for the observed real-world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe.This article is part of the theme issue 'Kinetic exchange models of societies and economies'. KW - income inequality KW - income mobility KW - geometric Brownian motion KW - non-ergodicity KW - stochastic resetting Y1 - 2022 U6 - https://doi.org/10.1098/rsta.2021.0157 SN - 1364-503X SN - 1471-2962 VL - 380 IS - 2224 PB - Royal Society CY - London ER - TY - JOUR A1 - Stojkoski, Viktor A1 - Sandev, Trifce A1 - Kocarev, Ljupco A1 - Pal, Arnab T1 - Autocorrelation functions and ergodicity in diffusion with stochastic resetting JF - Journal of physics : A, Mathematical and theoretical N2 - Diffusion with stochastic resetting is a paradigm of resetting processes. Standard renewal or master equation approach are typically used to study steady state and other transport properties such as average, mean squared displacement etc. What remains less explored is the two time point correlation functions whose evaluation is often daunting since it requires the implementation of the exact time dependent probability density functions of the resetting processes which are unknown for most of the problems. We adopt a different approach that allows us to write a stochastic solution for a single trajectory undergoing resetting. Moments and the autocorrelation functions between any two times along the trajectory can then be computed directly using the laws of total expectation. Estimation of autocorrelation functions turns out to be pivotal for investigating the ergodic properties of various observables for this canonical model. In particular, we investigate two observables (i) sample mean which is widely used in economics and (ii) time-averaged-mean-squared-displacement (TAMSD) which is of acute interest in physics. We find that both diffusion and drift-diffusion processes with resetting are ergodic at the mean level unlike their reset-free counterparts. In contrast, resetting renders ergodicity breaking in the TAMSD while both the stochastic processes are ergodic when resetting is absent. We quantify these behaviors with detailed analytical study and corroborate with extensive numerical simulations. Our results can be verified in experimental set-ups that can track single particle trajectories and thus have strong implications in understanding the physics of resetting. KW - autocorrelations KW - ergodicity KW - diffusion KW - stochastic resetting Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac4ce9 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Stoll, Andreas T1 - Advanced spectroscopic instruments enabled by integrated optics N2 - The aim of this work is the study of silica Arrayed Waveguide Gratings (AWGs) in the context of applications in astronomy. The specific focus lies on the investigation of the feasibility and technology limits of customized silica AWG devices for high resolution near-infrared spectroscopy. In a series of theoretical and experimental studies, AWG devices of varying geometry, foot-print and spectral resolution are constructed, simulated using a combination of a numerical beam propagation method and Fraunhofer diffraction and fabricated devices are characterized with respect to transmission efficiency, spectral resolution and polarization sensitivity. The impact of effective index non-uniformities on the performance of high-resolution AWG devices is studied numerically. Characterization results of fabricated devices are used to extrapolate the technology limits of the silica platform. The important issues of waveguide birefringence and defocus aberration are discussed theoretically and addressed experimentally by selection of an appropriate aberration-minimizing anastigmatic AWG layout structure. The drawbacks of the anastigmatic AWG geometry are discussed theoretically. From the results of the experimental studies, it is concluded that fabrication-related phase errors and waveguide birefringence are the primary limiting factors for the growth of AWG spectral resolution. It is shown that, without post-processing, the spectral resolving power is phase-error-limited to R < 40, 000 and, in the case of unpolarized light, birefringence-limited to R < 30, 000 in the AWG devices presented in this work. Necessary measures, such as special waveguide geometries and post-fabrication phase error correction are proposed for future designs. The elimination of defocus aberration using an anastigmatic AWG geometry is successfully demonstrated in experiment. Finally, a novel, non-planar dispersive in-fibre waveguide structure is proposed, discussed and studied theoretically. N2 - Das Ziel der vorliegenden Arbeit ist die Untersuchung von Arrayed Waveguide Gratings (AWGs) auf SiO2-Basis im Kontext von Anwendungen in der Astronomie. Der besondere Fokus liegt auf der Untersuchung der Machbarkeit und der technologischen Grenzen von spezialisierten AWGs für die hochauflösende Nahinfrarot-Spektroskopie. In einer Reihe von theoretischen und experimentellen Studien werden AWGs unterschiedlicher Geometrie, Größe und spektraler Auflösung konstruiert, unter Verwendung einer numerischen Beam-Propagation-Methode (BPM) und Fraunhofer-Beugung simuliert und hinsichtlich Effizienz, spektraler Auflösung und Polarisationsempfindlichkeit charakterisiert. Der Einfluss von Variationen des effektiven Brechungsindex auf die Leistung von hochauflösenden AWGs wird numerisch untersucht. Mit hergestellten AWGs gewonnene Messergebnisse werden verwendet, um die technologischen Grenzen der SiO2-Plattform zu extrapolieren. Die relevanten Probleme der Polarisationsempfindlichkeit und der in kanonischen Rowland-Geometrien auftretenden Defokusaberration werden theoretisch diskutiert und experimentell durch die Auswahl einer geeigneten aberrationsminimierenden AWG-Struktur angegangen. Die Nachteile anastigmatischer AWGs werden theoretisch diskutiert. Aus den Ergebnissen der experimentellen Studien wird geschlossen, dass herstellungsbedingte Phasenfehler und Wellenleiter-Doppelbrechung die primären begrenzenden Faktoren für die Erhöhung der AWG-Spektralauflösung sind. Es wird gezeigt, dass das spektrale Auflösungsvermögen der in dieser Arbeit präsentierten AWGs ohne Phasenfehlerkorrektur auf R < 40, 000 und durch Doppelbrechung auf R < 30, 000 im Fall unpolarisierten Lichtes begrenzt ist. Notwendige Maßnahmen wie spezielle Wellenleitergeometrien und Phasenfehlerkorrektur nach der Herstellung werden für zukünftige AWG-Designs empfohlen. Die Eliminierung von Defokussierungsfehlern unter Verwendung einer anastigmatischen AWG-Geometrie wird erfolgreich im Experiment demonstriert. Schließlich wird eine neuartige, in eine optische Faser eingebettete, nicht-planare dispersive Wellenleiterstruktur vorgeschlagen, diskutiert und theoretisch untersucht. KW - Astrophotonics KW - Integrated spectrograph KW - planar lightwave circuit KW - arrayed waveguide grating KW - silica-on-silicon KW - Astrophotonik KW - integrierter Spektrograph KW - planare Lichtwellenleiter KW - Siliziumdioxid-auf-Silizium Y1 - 2022 ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Lang, Felix T1 - All-perovskite tandems get flexible JF - Nature energy N2 - Flexible all-perovskite tandem photovoltaics open up new opportunities for application compared to rigid devices, yet their performance lags behind. Now, researchers show that molecule-bridged interfaces mitigate charge recombination and crack formation, improving the efficiency and mechanical reliability of flexible devices. Y1 - 2022 U6 - https://doi.org/10.1038/s41560-022-01087-6 SN - 2058-7546 VL - 7 IS - 8 SP - 688 EP - 689 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Sun, Bowen A1 - Sandberg, Oskar A1 - Neher, Dieter A1 - Armin, Ardalan A1 - Shoaee, Safa T1 - Wave optics of differential absorption spectroscopy in thick-junction organic solar cells BT - optical artifacts and correction strategies JF - Physical review applied / The American Physical Society N2 - Differential absorption spectroscopy techniques serve as powerful techniques to study the excited species in organic solar cells. However, it has always been challenging to employ these techniques for characterizing thick-junction organic solar cells, especially when a reflective top contact is involved. In this work, we present a detailed and systematic study on how a combination of the presence of the interference effect and a nonuniform charge-distribution profile, severely manipulates experimental spectra and the decay dynamics. Furthermore, we provide a practical methodology to correct these optical artifacts in differential absorption spectroscopies. The results and the proposed correction method generally apply to all kinds of differential absorption spectroscopy techniques and various thin-film systems, such as organics, perovskites, kesterites, and two-dimensional materials. Notably, it is found that the shape of differential absorption spectra can be strongly distorted, starting from 150-nm active-layer thickness; this matches the thickness range of thick-junction organic solar cells and most perovskite solar cells and needs to be carefully considered in experiments. In addition, the decay dynamics of differential absorption spectra is found to be disturbed by optical artifacts under certain conditions. With the help of the proposed correction formalism, differential spectra and the decay dynamics can be characterized on the full device of thin-film solar cells in transmission mode and yield accurate and reliable results to provide design rules for further progress. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevApplied.17.054016 SN - 2331-7019 VL - 17 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sushch, Iurii A1 - Brose, Robert A1 - Pohl, Martin A1 - Plotko, Pavlo A1 - Das, Samata T1 - Leptonic nonthermal emission from supernova remnants evolving in the circumstellar magnetic field JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The very-high-energy (VHE; E > 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac3cb8 SN - 0004-637X SN - 1538-4357 VL - 926 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Teichmann, Erik A1 - Lewandowski, Heather J. A1 - Alemani, Micol T1 - Investigating students’ views of experimental physics in German laboratory classes JF - Physical Review Physics Education Research N2 - There is a large variety of goals instructors have for laboratory courses, with different courses focusing on different subsets of goals. An often implicit, but crucial, goal is to develop students’ attitudes, views, and expectations about experimental physics to align with practicing experimental physicists. The assessment of laboratory courses upon this one dimension of learning has been intensively studied in U.S. institutions using the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). However, there is no such an instrument available to use in Germany, and the influence of laboratory courses on students views about the nature of experimental physics is still unexplored at German-speaking institutions. Motivated by the lack of an assessment tool to investigate this goal in laboratory courses at German-speaking institutions, we present a translated version of the E-CLASS adapted to the context at German-speaking institutions. We call the German version of the E-CLASS, the GE-CLASS. We describe the translation process and the creation of an automated web-based system for instructors to assess their laboratory courses. We also present first results using GE-CLASS obtained at the University of Potsdam. A first comparison between E-CLASS and GE-CLASS results shows clear differences between University of Potsdam and U.S. students’ views and beliefs about experimental physics. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevPhysEducRes.18.010135 SN - 1554-9178 VL - 18 SP - 010135-1 EP - 010135-17 PB - APS CY - College Park, Maryland, United States ET - 1 ER - TY - GEN A1 - Teichmann, Erik A1 - Lewandowski, Heather J. A1 - Alemani, Micol T1 - Investigating students’ views of experimental physics in German laboratory classes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - There is a large variety of goals instructors have for laboratory courses, with different courses focusing on different subsets of goals. An often implicit, but crucial, goal is to develop students’ attitudes, views, and expectations about experimental physics to align with practicing experimental physicists. The assessment of laboratory courses upon this one dimension of learning has been intensively studied in U.S. institutions using the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). However, there is no such an instrument available to use in Germany, and the influence of laboratory courses on students views about the nature of experimental physics is still unexplored at German-speaking institutions. Motivated by the lack of an assessment tool to investigate this goal in laboratory courses at German-speaking institutions, we present a translated version of the E-CLASS adapted to the context at German-speaking institutions. We call the German version of the E-CLASS, the GE-CLASS. We describe the translation process and the creation of an automated web-based system for instructors to assess their laboratory courses. We also present first results using GE-CLASS obtained at the University of Potsdam. A first comparison between E-CLASS and GE-CLASS results shows clear differences between University of Potsdam and U.S. students’ views and beliefs about experimental physics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1263 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560429 SN - 1866-8372 SP - 010135-1 EP - 010135-17 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Park, Seongyu A1 - Kim, Yeongjin A1 - Jeon, Jae-Hyung A1 - Metzler, Ralf A1 - Lomholt, Michael A. T1 - Bayesian inference of scaled versus fractional Brownian motion JF - Journal of physics : A, mathematical and theoretical N2 - We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one. KW - Bayesian inference KW - scaled Brownian motion KW - single particle tracking Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac60e7 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Thayumanasundaram, Savitha A1 - Raman Venkatesan, Thulasinath A1 - Ousset, Aymeric A1 - Van Hollebeke, Kim A1 - Aerts, Luc A1 - Wubbenhorst, Michael A1 - Van den Mooter, Guy T1 - Complementarity of mDSC, DMA, and DRS Techniques in the Study of T-g and Sub-T-g Transitions in Amorphous Solids BT - PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA JF - Molecular pharmaceutics N2 - Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (T-g) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to T-g, there may be several other temperaturedependent transitions known as sub-T-g transitions (or beta-, gamma-, and delta-relaxations) which are identified by specific analytical techniques. The study of T-g and sub-T-g transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a selfstanding polymer film is used. A good correlation between the techniques in determining the T-g value of PVPVA, IND, and IND/ PVPVA-based ASDs is established, and the negligible difference (within 10 degrees C) is attributed to the different material properties assessed in each technique. However, the overall T-g behavior, the decrease in T-g with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-T-g transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-T-g transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 degrees C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques. KW - amorphous solids KW - PVPVA KW - indomethacin KW - ASDs KW - dynamic mechanical KW - analysis KW - dielectric relaxation spectroscopy KW - sub-T-g relaxations KW - relaxation dynamics Y1 - 2022 U6 - https://doi.org/10.1021/acs.molpharmaceut.2c00123 SN - 1543-8384 SN - 1543-8392 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Thomas, Timon T1 - Cosmic-ray hydrodynamics: theory, numerics, applications T1 - Hydrodynamik der kosmischen Strahlung: Theorie, Numerik, Anwendungen N2 - Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfvén waves. The small-scale magnetic fields associated with these Alfvén waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms. N2 - Kosmische Strahlung (CR) ist ein allgegenwärtiger und wichtiger Bestandteil astrophysikalischer Umgebungen wie des interstellaren Mediums (ISM) und des Intracluster-Mediums (ICM). Ihre plasmaphysikalischen Wechselwirkungen mit elektromagnetischen Feldern beeinflussen ihre Transporteigenschaften weitgehend. Effektive Modelle, die die Mikrophysik des CR-Transports einbeziehen, sind erforderlich, um die Auswirkungen von CRs auf die sie umgebenden makrophysikalischen Medien zu untersuchen. Die Entwicklung solcher Modelle ist eine Herausforderung, aufgrund der konzeptionellen, Längenskalen-, und Zeitskalen-Unterschiede zwischen den Mikroskalen der Plasmaphysik und den Makroskalen der Umgebung. Hydrodynamische Theorien des CR-Transports erreichen dies, indem sie die Entwicklung der CR-Population in Form von statistischen Momenten erfassen. Im etablierten hydrodynamischen Ein-Moment Modell für den CR-Transport wird die Dynamik der gesamten CR-Population durch eine einzige statistische Größe wie der häufig verwendeten CR-Energiedichte beschrieben. In dieser Arbeit entwickle ich eine neue hydrodynamische Zwei-Momenten Theorie für den CR-Transport, die das etablierte hydrodynamische Modell um den CR-Energiefluss als zweite unabhängige hydrodynamische Größe erweitert. Ich erläutere, wie dieses Modell die Wechselwirkung zwischen CRs und gyroresonanten Alfvén-Wellen berücksichtigt. Die mit diesen Alfvén-Wellen verbundenen kleinskaligen Magnetfelder streuen die CRs, was den CR-Transport entlang großskaligen Magnetfeldlinien grundlegend verändert. Dies führt zu den CR-Strömungs-und Diffusioneffekten, welche beide in der neu vorgestellten hydrodynamischen Theorie erfasst werden. Ich verwende eine adaptierte Eddington Näherung, um die hydrodynamischen Gleichungen zu schließen und untersuche die Genauigkeit dieser Näherung, indem ich sie mit Näherungen höherer Ordnung für den CR-Transport vergleiche. Darüber hinaus entwickle ich ein Finite-Volumen-Schema für das neue hydrodynamische Modell und passe es an den mitbewegten Gitter Code Arepo an. Dieses Schema wird mittels einer Simulation eines CR-getriebenen galaktischen Windes angewendet. Ich untersuche, wie CRs den Wind beschleunigen und führe eine statistische Analyse der CR-Transporteigenschaften innerhalb des simulierten zirkumgalaktischen Mediums (CGM) durch. Ich zeige, dass das neue hydrodynamische Modell das morphologische Erscheinungsbild eines neu-entdeckten bestimmten Typs von filamentartigen Radiostrukturen, welcher in der zentralen molekularen Zone (CMZ) auffindbar ist, erklären kann. Ich schlage vor, dass es sich bei diesen harfenartigen Strukturen um synchrotronstrahlende CRs handelt, die zuvor von einer punktförmigen Quelle wie dem stellaren Wind eines massereichen Sterns oder eines Pulsars in geflochtene Magnetfeldlinien injiziert wurden. Schließlich stelle ich den Finite-Volumen-Code Blinc vor, der adaptive Gitterverfeinerungstechniken (AMR) verwendet, um Simulationen von Strahlungs-und Magnetohydrodynamik (MHD) durchzuführen. Das Gitter von Blinc ist blockstrukturiert und wird im Computerspe-icher mittels eines graphbasierten Ansatzes dargestellt. Ich beschreibe die Implementierung des Gittergraphen und wie ein Diffusionsprozess eingesetzt wird, um einen Lastausgleich in parallelen Rechenumgebungen zu erreichen. Verschiedene Testprobleme werden verwendet, um die Genauigkeit und Robustheit der verwendeten numerischen Algorithmen zu überprüfen. KW - cosmic rays KW - hydrodynamics KW - radiative transfer KW - methods: analytical KW - methods: numerical KW - Galactic center KW - Non-thermal radiation sources KW - galaktisches Zentrum KW - Quellen nichtthermischer Strahlung KW - kosmische Strahlung KW - Hydrodynamik KW - Methoden: analytisch KW - Methoden: numerisch KW - Strahlungstransport Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563843 ER - TY - JOUR A1 - Toalá, Jesús Alberto A1 - Bowman, Dominic A1 - Van Reeth, Timothy A1 - Todt, Helge Tobias A1 - Dsilva, Karan A1 - Shenar, Tomer A1 - Koenigsberger, Gloria Suzanne A1 - Estrada-Dorado, Sandino A1 - Oskinova, Lidia M. A1 - Hamann, Wolf-Rainer T1 - Multiple variability time-scales of the early nitrogen-rich Wolf-Rayet star WR 7 JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of the optical variability of the early, nitrogen-rich Wolf-Rayet (WR) star WR 7. The analysis of multisector Transiting Exoplanet Survey Satellite (TESS) light curves and high-resolution spectroscopic observations confirm multiperiodic variability that is modulated on time-scales of years. We detect a dominant period of 2.6433 +/- 0.0005 d in the TESS sectors 33 and 34 light curves in addition to the previously reported high-frequency features from sector 7. We discuss the plausible mechanisms that may be responsible for such variability in WR 7, including pulsations, binarity, co-rotating interaction regions (CIRs), and clumpy winds. Given the lack of strong evidence for the presence of a stellar or compact companion, we suggest that WR 7 may pulsate in quasi-coherent modes in addition to wind variability likely caused by CIRs on top of stochastic low-frequency variability. WR 7 is certainly a worthy target for future monitoring in both spectroscopy and photometry to sample both the short (less than or similar to 1 d) and long (greater than or similar to 1000 d) variability time-scales. KW - stars: atmospheres KW - stars: evolution KW - stars: individual: WR 7 KW - stars: winds KW - outflows KW - stars: Wolft-Rayet Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1455 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 2269 EP - 2277 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Tockhorn, Philipp A1 - Sutter, Johannes A1 - Cruz Bournazou, Alexandros A1 - Wagner, Philipp A1 - Jäger, Klaus A1 - Yoo, Danbi A1 - Lang, Felix A1 - Grischek, Max A1 - Li, Bor A1 - Li, Jinzhao A1 - Shargaieva, Oleksandra A1 - Unger, Eva A1 - Al-Ashouri, Amran A1 - Köhnen, Eike A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Stannowski, Bernd A1 - Albrecht, Steve A1 - Becker, Christiane T1 - Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells JF - Nature nanotechnology N2 - Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%. Y1 - 2022 U6 - https://doi.org/10.1038/s41565-022-01228-8 SN - 1748-3387 SN - 1748-3395 VL - 17 IS - 11 SP - 1214 EP - 1221 PB - Nature Publishing Group CY - London [u.a.] ER - TY - JOUR A1 - Tomovski, Živorad A1 - Metzler, Ralf A1 - Gerhold, Stefan T1 - Fractional characteristic functions, and a fractional calculus approach for moments of random variables JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented. KW - Fractional calculus (primary) KW - Characteristic function KW - Mittag-Leffler KW - function KW - Fractional moments KW - Mellin transform Y1 - 2022 U6 - https://doi.org/10.1007/s13540-022-00047-x SN - 1314-2224 VL - 25 IS - 4 SP - 1307 EP - 1323 PB - De Gruyter CY - Berlin ; Boston ER - TY - JOUR A1 - Tönjes, Ralf A1 - Kori, Hiroshi T1 - Phase and frequency linear response theory for hyperbolic chaotic oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We formulate a linear phase and frequency response theory for hyperbolic flows, which generalizes phase response theory for autonomous limit cycle oscillators to hyperbolic chaotic dynamics. The theory is based on a shadowing conjecture, stating the existence of a perturbed trajectory shadowing every unperturbed trajectory on the system attractor for any small enough perturbation of arbitrary duration and a corresponding unique time isomorphism, which we identify as phase such that phase shifts between the unperturbed trajectory and its perturbed shadow are well defined. The phase sensitivity function is the solution of an adjoint linear equation and can be used to estimate the average change of phase velocity to small time dependent or independent perturbations. These changes in frequency are experimentally accessible, giving a convenient way to define and measure phase response curves for chaotic oscillators. The shadowing trajectory and the phase can be constructed explicitly in the tangent space of an unperturbed trajectory using co-variant Lyapunov vectors. It can also be used to identify the limits of the regime of linear response. Y1 - 2022 U6 - https://doi.org/10.1063/5.0064519 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 4 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Ujevic, Maximiliano A1 - Rashti, Alireza A1 - Gieg, Henrique Leonhard A1 - Tichy, Wolfgang A1 - Dietrich, Tim T1 - High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.023029 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - van Marle, Allard Jan A1 - Bohdan, Artem A1 - Morris, Paul J. A1 - Pohl, Martin A1 - Marcowith, Alexandre T1 - Diffusive shock acceleration at oblique high mach number shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The current paradigm of cosmic-ray (CR) origin states that the greater part of galactic CRs is produced by supernova remnants. The interaction of supernova ejecta with the interstellar medium after a supernova's explosions results in shocks responsible for CR acceleration via diffusive shock acceleration (DSA). We use particle-in-cell (PIC) simulations and a combined PIC-magnetohydrodynamic (PIC-MHD) technique to investigate whether DSA can occur in oblique high Mach number shocks. Using the PIC method, we follow the formation of the shock and determine the fraction of the particles that gets involved in DSA. With this result, we use PIC-MHD simulations to model the large-scale structure of the plasma and the magnetic field surrounding the shock and find out whether or not the reflected particles can generate upstream turbulence and trigger DSA. We find that the feasibility of this process in oblique shocks depends strongly on the Alfvenic Mach number, and the DSA process is more likely to be triggered at high Mach number shocks. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac5962 SN - 1538-4357 VL - 929 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Pietzsch, Annette A1 - Eckert, Sebastian A1 - Föhlisch, Alexander T1 - Targeting individual tautomers in equilibrium by resonant inelastic X-ray scattering JF - The journal of physical chemistry letters N2 - Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the pi and sigma manifolds at the proton-transfer site. KW - Equilibrium KW - Molecular structure KW - Molecules KW - Nitrogen KW - Solvents Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.1c03453 SN - 1948-7185 VL - 13 IS - 10 SP - 2459 EP - 2466 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Velk, Natalia T1 - Investigation of the interaction of lysozyme with poly(l-lysine)/hyaluronic acid multilayers BT - Fluorescence and ATR-FTIR study Y1 - 2022 ER - TY - GEN A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1303 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577643 SN - 1866-8372 IS - 1303 ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks JF - Physical review research / American Physical Society N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033055 SN - 2643-1564 VL - 4 IS - 3 PB - American Physical Society CY - College Park, MD ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Nathan, Ran A1 - Toledo, Sivan A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Classification of anomalous diffusion in animal movement data using power spectral analysis JF - Journal of physics : A, Mathematical and theoretical N2 - The field of movement ecology has seen a rapid increase in high-resolution data in recent years, leading to the development of numerous statistical and numerical methods to analyse relocation trajectories. Data are often collected at the level of the individual and for long periods that may encompass a range of behaviours. Here, we use the power spectral density (PSD) to characterise the random movement patterns of a black-winged kite (Elanus caeruleus) and a white stork (Ciconia ciconia). The tracks are first segmented and clustered into different behaviours (movement modes), and for each mode we measure the PSD and the ageing properties of the process. For the foraging kite we find 1/f noise, previously reported in ecological systems mainly in the context of population dynamics, but not for movement data. We further suggest plausible models for each of the behavioural modes by comparing both the measured PSD exponents and the distribution of the single-trajectory PSD to known theoretical results and simulations. KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - ecological KW - movement data Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e8f SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 33 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Vilk, Ohad A1 - Campos, Daniel A1 - Méndez, Vicenç A1 - Lourie, Emmanuel A1 - Nathan, Ran A1 - Assaf, Michael T1 - Phase transition in a non-Markovian animal exploration model with preferential returns JF - Physical review letters N2 - We study a non-Markovian and nonstationary model of animal mobility incorporating both exploration and memory in the form of preferential returns. Exact results for the probability of visiting a given number of sites are derived and a practical WKB approximation to treat the nonstationary problem is developed. A mean-field version of this model, first suggested by Song et al., [Modelling the scaling properties of human mobility, Nat. Phys. 6, 818 (2010)] was shown to well describe human movement data. We show that our generalized model adequately describes empirical movement data of Egyptian fruit bats (Rousettus aegyptiacus) when accounting for interindividual variation in the population. We also study the probability of visiting any site a given number of times and derive a mean-field equation. Our analysis yields a remarkable phase transition occurring at preferential returns which scale linearly with past visits. Following empirical evidence, we suggest that this phase transition reflects a trade-off between extensive and intensive foraging modes. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevLett.128.148301 SN - 0031-9007 SN - 1079-7114 VL - 128 IS - 14 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time-averaging and nonergodicity of reset geometric Brownian motion with drift JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Delta) not equal TAMSD(Delta) and Variance(Delta) not equal TAMSD(Delta) at short lag times Delta and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Delta/T << 1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.106.034137 SN - 2470-0045 SN - 2470-0053 VL - 106 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Nonergodicity of reset geometric Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.L012106 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Tokmoldin, Nurlan A1 - Sun, Bowen A1 - Brus, Viktor V. A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Determination of the charge carrier density in organic solar cells BT - a tutorial JF - Journal of applied physics N2 - The increase in the performance of organic solar cells observed over the past few years has reinvigorated the search for a deeper understanding of the loss and extraction processes in this class of device. A detailed knowledge of the density of free charge carriers under different operating conditions and illumination intensities is a prerequisite to quantify the recombination and extraction dynamics. Differential charging techniques are a promising approach to experimentally obtain the charge carrier density under the aforementioned conditions. In particular, the combination of transient photovoltage and photocurrent as well as impedance and capacitance spectroscopy have been successfully used in past studies to determine the charge carrier density of organic solar cells. In this Tutorial, these experimental techniques will be discussed in detail, highlighting fundamental principles, practical considerations, necessary corrections, advantages, drawbacks, and ultimately their limitations. Relevant references introducing more advanced concepts will be provided as well. Therefore, the present Tutorial might act as an introduction and guideline aimed at new prospective users of these techniques as well as a point of reference for more experienced researchers. Published under an exclusive license by AIP Publishing. KW - Electrical properties and parameters KW - Organic semiconductors KW - Solar cells KW - Photoconductivity KW - Capacitance spectroscopy Y1 - 2022 U6 - https://doi.org/10.1063/5.0094955 SN - 0021-8979 SN - 1089-7550 SN - 1520-8850 VL - 131 IS - 22 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Voroshnin, Vladimir A1 - Tarasov, Artem V. A1 - Bokai, Kirill A. A1 - Chikina, Alla A1 - Senkovskiy, Boris V. A1 - Ehlen, Niels A1 - Usachov, Dmitry Yu. A1 - Gruneis, Alexander A1 - Krivenkov, Maxim A1 - Sanchez-Barriga, Jaime A1 - Fedorov, Alexander T1 - Direct spectroscopic evidence of magnetic proximity effect in MoS2 monolayer on graphene/Co JF - ACS nano N2 - A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the (Gamma) over bar point and canting of spins at the (K) over bar point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at (K) over bar is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the (Gamma) over bar point and 8 meV (K) over bar-(K) over bar' valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T. KW - magnetic proximity effect KW - MoS2 KW - monolayer KW - graphene KW - spin-resolved KW - ARPES Y1 - 2022 U6 - https://doi.org/10.1021/acsnano.1c10391 SN - 1936-0851 SN - 1936-086X VL - 16 IS - 5 SP - 7448 EP - 7456 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Vu, Nils Leif T1 - A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods N2 - Elliptic partial differential equations are ubiquitous in physics. In numerical relativity---the study of computational solutions to the Einstein field equations of general relativity---elliptic equations govern the initial data that seed every simulation of merging black holes and neutron stars. In the quest to produce detailed numerical simulations of these most cataclysmic astrophysical events in our Universe, numerical relativists resort to the vast computing power offered by current and future supercomputers. To leverage these computational resources, numerical codes for the time evolution of general-relativistic initial value problems are being developed with a renewed focus on parallelization and computational efficiency. Their capability to solve elliptic problems for accurate initial data must keep pace with the increasing detail of the simulations, but elliptic problems are traditionally hard to parallelize effectively. In this thesis, I develop new numerical methods to solve elliptic partial differential equations on computing clusters, with a focus on initial data for orbiting black holes and neutron stars. I develop a discontinuous Galerkin scheme for a wide range of elliptic equations, and a stack of task-based parallel algorithms for their iterative solution. The resulting multigrid-Schwarz preconditioned Newton-Krylov elliptic solver proves capable of parallelizing over 200 million degrees of freedom to at least a few thousand cores, and already solves initial data for a black hole binary about ten times faster than the numerical relativity code SpEC. I also demonstrate the applicability of the new elliptic solver across physical disciplines, simulating the thermal noise in thin mirror coatings of interferometric gravitational-wave detectors to unprecedented accuracy. The elliptic solver is implemented in the new open-source SpECTRE numerical relativity code, and set up to support simulations of astrophysical scenarios for the emerging era of gravitational-wave and multimessenger astronomy. N2 - Elliptische partielle Differentialgleichungen sind in der Physik allgegenwärtig. Das elektrische Feld einer Ladung, die Gravitation der Erde, die Statik einer Brücke, oder die Temperaturverteilung auf einer heißen Herdplatte folgen trotz verschiedenster zugrundeliegender Physik elliptischen Gleichungen ähnlicher Struktur, denn es sind statische, also zeitunabhängige Effekte. Elliptische Gleichungen beschreiben auch astrophysikalische Szenarien von kataklysmischen Ausmaßen, die jegliche Gegebenheiten auf der Erde weit überschreiten. So werden Schwarze Löcher und Neutronensterne -- zwei mögliche Endstadien von massereichen Sternen -- ebenfalls von elliptischen Gleichungen beschrieben. In diesem Fall sind es Einstein's Feldgleichungen von Raum, Zeit, Gravitation und Materie. Da Schwarze Löcher und Neutronensterne mehr Masse als unsere Sonne auf die Größe einer Stadt wie Potsdam komprimieren übernimmt die Gravitation, und damit Einstein's allgemeine Relativitätstheorie, die Kontrolle. Es ist die Aufgabe der numerischen Relativität, Szenarien wie die Kollision solcher gewaltigen Objekte mithilfe von Supercomputern zu simulieren und damit die Gravitationswellensignale vorherzusagen, die von Detektoren auf der Erde gemessen werden können. Jede dieser Simulationen beginnt mit Anfangsdaten, die elliptische Gleichungen erfüllen müssen. In dieser Dissertation entwickle ich neue numerische Methoden um elliptische partielle Differentialgleichungen auf Supercomputern zu lösen, mit besonderem Augenmerk auf Anfangsdaten für Simulationen von Schwarzen Löchern und Neutronensternen. Ich entwickle dafür eine sogenannte discontinuous Galerkin Methode um elliptische Gleichungen auf Computern zu repräsentieren, sowie eine Reihe von Algorithmen um diese Gleichungen anschließend schrittweise numerisch zu lösen bis sie die notwendige Präzision erfüllen. Die Besonderheit dieser Algorithmen liegt in ihrer Eigenschaft, in viele Teilprobleme zerlegt auf einer großen Zahl von Rechenkernen parallel arbeiten zu können. Dieses task-based parallelism ermöglicht die effektive Verwendung von Supercomputern. Ich demonstriere die Fähigkeit meiner Algorithmen, Berechnungen von über 200 Millionen Unbekannten mit hoher Effizienz auf mindestens einige Tausend Rechenkerne verteilen zu können, und Anfangsdaten zweier sich umkreisender Schwarzer Löcher bereits etwa zehnmal schneller zu lösen als der langjährig verwendete Computercode SpEC. Außerdem zeige ich, dass mein neuer Code auch außerhalb der Relativitätstheorie anwendbar ist. Dazu simuliere ich thermisches Rauschen in den Beschichtungen von Spiegeln, das ebenfalls von elliptischen Gleichungen beschrieben wird. Solche Spiegel sind Objekt großen Forschungsinteresses, da sie ein zentrales Element von Gravitationswellendetektoren darstellen. Mein Code zur numerischen Lösung elliptischer Gleichungen ist Teil des kollaborativen und quelloffenen SpECTRE Forschungsprojekts zur Simulation astrophysikalischer Szenarien für die aufstrebende Ära der Gravitationswellen- und Multimessenger-Astronomie. KW - numerical relativity KW - task-based parallelism KW - discontinuous Galerkin methods KW - elliptic partial differential equations KW - black holes KW - initial data KW - high-performance computing KW - iterative methods for sparse linear systems KW - gravitational waves KW - thermal noise in mirror coatings KW - numerische Relativität KW - elliptische partielle Differentialgleichungen KW - schwarze Löcher KW - Anfangsdaten KW - Hochleistungscomputer KW - iterative Methoden zur Lösung linearer Systeme KW - Gravitationswellen KW - thermisches Rauschen in Spiegelbeschichtungen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562265 ER - TY - JOUR A1 - Walker, Simon N. A1 - Boynton, Richard J. A1 - Shprits, Yuri A1 - Balikhin, Michael A. A1 - Drozdov, Alexander T1 - Forecast of the energetic electron environment of the radiation belts JF - Space Weather: The International Journal of Research and Applications N2 - Different modeling methodologies possess different strengths and weakness. For instance, data based models may provide superior accuracy but have a limited spatial coverage while physics based models may provide lower accuracy but provide greater spatial coverage. This study investigates the coupling of a data based model of the electron fluxes at geostationary orbit (GEO) with a numerical model of the radiation belt region to improve the resulting forecasts/pastcasts of electron fluxes over the whole radiation belt region. In particular, two coupling methods are investigated. The first assumes an average value for L* for GEO, namely LGEO* L-GEO* = 6.2. The second uses a value of L* that varies with geomagnetic activity, quantified using the Kp index. As the terrestrial magnetic field responds to variations in geomagnetic activity, the value of L* will vary for a specific location. In this coupling method, the value of L* is calculated using the Kp driven Tsyganenko 89c magnetic field model for field line tracing. It is shown that this addition can result in changes in the initialization of the parameters at the Versatile Electron Radiation Belt model outer boundary. Model outputs are compared to Van Allen Probes MagEIS measurements of the electron fluxes in the inner magnetosphere for the March 2015 geomagnetic storm. It is found that the fixed LGEO* L-GEO* coupling method produces a more realistic forecast. KW - radiation belt forecasts KW - data based NARMAX modeling KW - verb simulations; KW - geostationary orbit KW - electron flux forecasts Y1 - 2022 U6 - https://doi.org/10.1029/2022SW003124 SN - 1542-7390 VL - 20 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wang, Feipeng A1 - Zhang, Zheng A1 - Yan, Yuyang A1 - Shen, Zijia A1 - Wang, Qiang A1 - Gerhard, Reimund T1 - Surface reconstruction on electro-spun PVA/PVP nanofibers by water evaporation JF - Nanomaterials N2 - Tailoring the secondary surface morphology of electro-spun nanofibers has been highly desired, as such delicate structures equip nanofibers with distinct functions. Here, we report a simple strategy to directly reconstruct the surface of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) nanofibers by water evaporation. The roughness and diameter of the nanofibers depend on the temperature during vacuum drying. Surface changes of the nanofibers from smooth to rough were observed at 55 degrees C, with a significant drop in nanofiber diameter. We attribute the formation of the secondary surface morphology to the intermolecular forces in the water vapor, including capillary and the compression forces, on the basis of the results from the Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. The strategy is universally effective for various electro-spun polymer nanofibers, thus opening up avenues toward more detailed and sophisticated structure design and implementation for nanofibers. KW - surface reconstruction KW - intermolecular force KW - surface-roughened KW - nanofiber Y1 - 2022 U6 - https://doi.org/10.3390/nano12050797 SN - 2079-4991 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wang, Suhao A1 - Zuo, Guangzheng A1 - Kim, Jongho A1 - Sirringhaus, Henning T1 - Progress of Conjugated Polymers as Emerging Thermoelectric Materials JF - Progress in polymer science N2 - Thanks to the combined effort s of scientist s in several research fields, the preceding decade has witnessed considerable progress in the use of conjugated polymers as emerging thermoelectric materials leading to significant improvements in performance and demonstration of a number of diverse applications. Despite these recent advances, systematic assessments of the impact of molecular design on thermoelectric properties are scarce. Although several reviews marginally highlight the role of chemical structure, the understanding of structure-performance relationships is still fragmented. An in-depth understanding of the relationship between molecular structure and thermoelectric properties will enable the rational design of next-generation thermoelectric polymers. To this end, this review showcases the state-of-the-art thermoelectric polymers, discusses structure-performance relationships, suggests strategies for improving thermoelectric performance that go beyond molecular design, and highlights some of the most impressive applications of thermoelectric polymers. KW - Organic thermoelectrics KW - Seebeck coefficient KW - Doping KW - Polaron KW - Conducting polymers KW - Structure-performance relationship Y1 - 2022 U6 - https://doi.org/10.1016/j.progpolymsci.2022.101548 SN - 0079-6700 SN - 1873-1619 VL - 129 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes JF - Physical Review Research N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.013161 SN - 2643-1564 VL - 4 SP - 013161-1 EP - 013161-13 PB - American Physical Society CY - College Park, Maryland, United States ET - 1 ER - TY - GEN A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1261 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560377 SN - 1866-8372 SP - 013161-1 EP - 013161-13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Wang, Wei A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD < x(2)(Delta)> and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp01741e SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 31 SP - 18482 EP - 18504 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Warby, Jonathan A1 - Zu, Fengshuo A1 - Zeiske, Stefan A1 - Gutierrez-Partida, Emilio A1 - Frohloff, Lennart A1 - Kahmann, Simon A1 - Frohna, Kyle A1 - Mosconi, Edoardo A1 - Radicchi, Eros A1 - Lang, Felix A1 - Shah, Sahil A1 - Pena-Camargo, Francisco A1 - Hempel, Hannes A1 - Unold, Thomas A1 - Koch, Norbert A1 - Armin, Ardalan A1 - De Angelis, Filippo A1 - Stranks, Samuel D. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Understanding performance limiting interfacial recombination in pin Perovskite solar cells JF - Advanced energy materials N2 - Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. KW - C60 KW - defects KW - interface recombination KW - loss mechanisms KW - perovskites KW - solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103567 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Werner, Klaus A1 - Reindl, Nicole A1 - Dorsch, Matti A1 - Geier, Stephan A1 - Munari, Ulisse A1 - Raddi, Roberto T1 - Non-local thermodynamic equilibrium spectral analysis of five hot, hydrogen-deficient pre-white dwarfs JF - Astronomy and Astrophysics N2 - Hot, compact, hydrogen-deficient pre-white dwarfs (pre-WDs) with effective temperatures of Teff > 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C※ IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs. KW - stars: atmospheres KW - stars: abundances KW - stars: evolution KW - subdwarfs KW - white dwarfs Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142397 SN - 0004-6361 SN - 1432-0746 VL - 658 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Wulff, Peter A1 - Mientus, Lukas A1 - Nowak, Anna A1 - Borowski, Andreas T1 - Utilizing a pretrained language model (BERT) to classify preservice physics teachers' written reflections JF - International journal of artificial intelligence in education N2 - Computer-based analysis of preservice teachers' written reflections could enable educational scholars to design personalized and scalable intervention measures to support reflective writing. Algorithms and technologies in the domain of research related to artificial intelligence have been found to be useful in many tasks related to reflective writing analytics such as classification of text segments. However, mostly shallow learning algorithms have been employed so far. This study explores to what extent deep learning approaches can improve classification performance for segments of written reflections. To do so, a pretrained language model (BERT) was utilized to classify segments of preservice physics teachers' written reflections according to elements in a reflection-supporting model. Since BERT has been found to advance performance in many tasks, it was hypothesized to enhance classification performance for written reflections as well. We also compared the performance of BERT with other deep learning architectures and examined conditions for best performance. We found that BERT outperformed the other deep learning architectures and previously reported performances with shallow learning algorithms for classification of segments of reflective writing. BERT starts to outperform the other models when trained on about 20 to 30% of the training data. Furthermore, attribution analyses for inputs yielded insights into important features for BERT's classification decisions. Our study indicates that pretrained language models such as BERT can boost performance for language-related tasks in educational contexts such as classification. KW - Reflective writing KW - NLP KW - Deep learning KW - Science education Y1 - 2022 U6 - https://doi.org/10.1007/s40593-022-00290-6 SN - 1560-4292 SN - 1560-4306 IS - 33 SP - 439 EP - 466 PB - Springer CY - New York ER - TY - JOUR A1 - Xu, Pengbo A1 - Metzler, Ralf A1 - Wang, Wanli T1 - Infinite density and relaxation for Levy walks in an external potential BT - Hermite polynomial approach JF - Physical review N2 - Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.044118 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 4 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Xu, Pengbo A1 - Zhou, Tian A1 - Metzler, Ralf A1 - Deng, Weihua T1 - Stochastic harmonic trapping of a Lévy walk: transport and first-passage dynamics under soft resetting strategies T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1262 KW - diffusion KW - anomalous diffusion KW - stochastic resetting KW - Levy walks Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560402 SN - 1866-8372 SP - 1 EP - 28 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Xu, Pengbo A1 - Zhou, Tian A1 - Metzler, Ralf A1 - Deng, Weihua T1 - Stochastic harmonic trapping of a Lévy walk BT - transport and first-passage dynamics under soft resetting strategies JF - New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics N2 - We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic. KW - diffusion KW - anomalous diffusion KW - stochastic resetting KW - Levy walks Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac5282 SN - 1367-2630 VL - 24 IS - 3 SP - 1 EP - 28 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - JOUR A1 - Yamazaki, Yosuke A1 - Matzka, Jürgen A1 - Stolle, Claudia A1 - Kervalishvili, Guram N. A1 - Rauberg, Jan A1 - Bronkalla, Oliver A1 - Morschhauser, Achim A1 - Bruinsma, Sean L. A1 - Shprits, Yuri A1 - Jackson, David R. T1 - Geomagnetic activity index Hpo JF - Geophysical research letters N2 - The geomagnetic activity index Kp is widely used but is restricted by low time resolution (3-hourly) and an upper limit. To address this, new geomagnetic activity indices, Hpo, are introduced. Similar to Kp, Hpo expresses the level of planetary geomagnetic activity in units of thirds (0o, 0+, 1-, 1o, 1+, 2-, horizontal ellipsis ) based on the magnitude of geomagnetic disturbances observed at subauroral observatories. Hpo has a higher time resolution than Kp. 30-min (Hp30) and 60-min (Hp60) indices are produced. The frequency distribution of Hpo is designed to be similar to that of Kp so that Hpo may be used as a higher time-resolution alternative to Kp. Unlike Kp, which is capped at 9o, Hpo is an open-ended index and thus can characterize severe geomagnetic storms more accurately. Hp30, Hp60 and corresponding linearly scaled ap30 and ap60 are available, in near real time, at the GFZ website (https://www.gfz-potsdam.de/en/hpo-index). KW - Hpo KW - Hp30 KW - Hp60 KW - apo KW - ap30 KW - ap60 Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098860 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Yan, Xiaoli A1 - Xue, Zhike A1 - Jiang, Chaowei A1 - Priest, E. R. A1 - Kliem, Bernhard A1 - Yang, Liheng A1 - Wang, Jincheng A1 - Kong, Defang A1 - Song, Yongliang A1 - Feng, Xueshang A1 - Liu, Zhong T1 - Fast plasmoid-mediated reconnection in a solar flare JF - Nature Communications N2 - Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-28269-w SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - GEN A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoaee, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1317 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587705 SN - 1866-8372 IS - 1317 ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoai, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Yuan, Jun A1 - Zhang, Chujun A1 - Qiu, Beibei A1 - Liu, Wei A1 - So, Shu Kong A1 - Mainville, Mathieu A1 - Leclerc, Mario A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Zou, Yingping T1 - Effects of energetic disorder in bulk heterojunction organic solar cells JF - Energy & environmental science N2 - Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed. Y1 - 2022 U6 - https://doi.org/10.1039/d2ee00271j SN - 1754-5692 SN - 1754-5706 VL - 15 IS - 7 SP - 2806 EP - 2818 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zapata-Arteaga, Osnat A1 - Marina, Sara A1 - Zuo, Guangzheng A1 - Xu, Kai A1 - Dörling, Bernhard A1 - Alberto Pérez, Luis A1 - Sebastián Reparaz, Juan A1 - Martín, Jaime A1 - Kemerink, Martijn A1 - Campoy-Quiles, Mariano T1 - Design rules for polymer blends with high thermoelectric performance JF - Advanced energy materials N2 - A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined. KW - doping KW - microstructure KW - organic thermoelectrics KW - orientation KW - ternary Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202104076 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 19 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Zaragoza-Cardiel, Javier A1 - Gómez-González, Víctor Mauricio Alfonso A1 - Mayya, Yalia Divakara A1 - Ramos-Larios, Gerardo T1 - Nebular abundance gradient in the Cartwheel galaxy using MUSE data JF - Monthly notices of the Royal Astronomical Society N2 - We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring. KW - galaxies: star clusters KW - galaxies: individual KW - galaxies: abundances Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1423 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 1689 EP - 1705 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Kurpiers, Jona A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Armin, Ardalan T1 - Probing charge generation efficiency in thin-film solar cells by integral-mode transient charge extraction JF - ACS photonics N2 - The photogeneration of free charges in light-harvesting devices is a multistep process, which can be challenging to probe due to the complexity of contributing energetic states and the competitive character of different driving mechanisms. In this contribution, we advance a technique, integral-mode transient charge extraction (ITCE), to probe these processes in thin-film solar cells. ITCE combines capacitance measurements with the integral-mode time-of-flight method in the low intensity regime of sandwich-type thin-film devices and allows for the sensitive determination of photogenerated charge-carrier densities. We verify the theoretical framework of our method by drift-diffusion simulations and demonstrate the applicability of ITCE to organic and perovskite semiconductor-based thin-film solar cells. Furthermore, we examine the field dependence of charge generation efficiency and find our ITCE results to be in excellent agreement with those obtained via time-delayed collection field measurements conducted on the same devices. KW - charge generation KW - thin-film solar cells KW - organic semiconductors; KW - perovskite semiconductors KW - external generation efficiency Y1 - 2022 U6 - https://doi.org/10.1021/acsphotonics.1c01532 SN - 2330-4022 VL - 9 IS - 4 SP - 1188 EP - 1195 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Zarrabi, Nasim A1 - Wolff, Christian Michael A1 - Raoufi, Meysam A1 - Peña-Camargo, Francisco A1 - Gutierrez-Partida, Emilio A1 - Meredith, Paul A1 - Stolterfoht, Martin A1 - Armin, Ardalan T1 - Static disorder in lead halide perovskites JF - The journal of physical chemistry letters N2 - In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. KW - Cations KW - External quantum efficiency KW - Perovskites KW - Solar cells KW - Solar energy Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01652 SN - 1948-7185 VL - 13 IS - 31 SP - 7280 EP - 7285 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zeitz, Maria A1 - Haacker, Jan M. A1 - Donges, Jonathan A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda T1 - Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic adjustment feedbacks JF - Earth system dynamics N2 - The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 degrees C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50 000 years, and the ice volume stabilizes at 61 %-93 % of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74 000 and over 300 000 years and oscillation amplitudes between 15 %-70 % of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100 000 years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future" and, thus, long-term resilience of the Greenland Ice Sheet. Y1 - 2022 U6 - https://doi.org/10.5194/esd-13-1077-2022 SN - 2190-4979 SN - 2190-4987 VL - 13 IS - 3 SP - 1077 EP - 1096 PB - Copernicus Publ. CY - Göttingen ER - TY - THES A1 - Zeuschner, Steffen Peer T1 - Magnetoacoustics observed with ultrafast x-ray diffraction N2 - In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons. N2 - In der vorliegenden Arbeit untersuche ich die Gitterdynamik von magnetisch geordneten und dünnen Filmen, deren Spinsystem mit Femtosekunden-Laserpulsen angeregt und untersucht wird. Die Quantifizierung der laserinduzierten thermischen Dynamik, der erzeugten Pikosekunden-Schallpulse sowie deren jeweiliger Einfluss auf die Magnetisierungsdynamik ist ein schwieriges Unterfangen. Umso mehr ist die Entwicklung und Anwendung von effizienten experimentellen Konzepten und umfangreichen Modellen grundlegend für das Antreiben des zukünftigen wissenschaftlichen und technologischen Fortschritt. In jedem Experiment dieser kummulativen Dissertation untersuche ich das Kristallgitter von Nanometer dünnen Filmen nach der Anregung mit Femtosekunden-Laserpulsen. Die relative Änderung der Gitterkonstante, hervorgerufen durch thermische Ausdehnung oder Pikosekunden-Schallpulse, wird dabei direkt mittels ultraschneller Röntgenbeugung (UXRD) gemessen. Der Aufbau nutzt zur Bereitstellung von ultrakurzen Röntgenpulsen eine lasergetriebene Plasma-Röntgenquelle (PXS). Phononen und Spins üben gleichermaßen einen Druck auf das Gitter aus, welches entsprechend der elastsischen Eigenschaften des Materials reagiert, was das Gitter zu einem vielseitigen Sensor für ultraschenlle Wechselwirkungen macht. Zum einen untersuche ich Materialien mit starken magnetoelastischen Eigentschaften: die stark magnetostriktive Seltenen-Erden-Verbindung TbFe2, elementares Dysprosium oder das technologisch relavante Invar-Material FePt. Zum anderen habe ich eine umfangreiche Studie der Gitterdynamik von Bi1Y2Fe5O12 (Bi:YIG) angestellt, in dem der Literatur zufolge hochfrequente kohärente Spindynamiken durch Femtosekunden-Laseranregung zu beobachten sind. Diese stehenden Spinwellen (SSWs) höherer Ordnung entstehen durch die kohärente und inkohärente Bewegung von Atomen, in anderen Worten Phononen, welche ich durch UXRD vermessen habe. Somit sind wir in der Lage, die experimentellen Beobachtungen der Gitter- und Spindynamik qualitativ und quantitativ zu vereinigen. Dies geschieht durch eine Kombination von Viel-Temperatur- und Anisotropiemodellierung sowie elastische, magnetoelastische, und mikromagnetsiche Modelle. Die gemeinsamen Daten von UXRD und der zeitaufgelösten magnetooptischen Kerr-Effekt Messungen (tr-MOKE), um jeweils die Gitter- und Spindynamik zu messen, wurden in der Vergangenheit noch an unterschiedlichen experimentellen Aufbauten gemessen. Um die Quantifizierung präziser zu gestalten, haben wir in unserer Arbeitsgruppe UXRD und tr-MOKE in einem einzigen Aufbau kombiniert, welcher somit meines Wissens der erste seiner Art ist. Ich half bei dem Entwurf und der Inbetriebnahme des neuen Aufbaus, welcher die gleichzeitige Messung von Gitter- und Spindynamik auf einer ultraschnellen Zeitskala unter identischen Anregungsbedingungen ermöglicht. Außerdem entwickelte ich eine neue Messroutine für Röntgenbeugung, welche die Messzeit von UXRD-Experimenten um bis zu einer Größenordnungen reduziert. Es nennt sich das Schneiden des reziproken Raumes (reciprocal space slicing, RSS) und nutzt den Vorteil von Flächendetektoren die Bewegung von Beugungsreflexen zu detektieren, was von einer Änderung der Gitterkonstante einhergeht, ohne zeitintensive Scans der Beugungswinkel mit dem Goniometer durchzuführen. RSS ist besonders nützlich für ultraschnelle Beugungsexperimente, weil die Messzeit an Großgeräten wie Synchrotrons oder Freie Elektronen Laser eine seltene und teure Ressource ist. Darüber hinaus ist RSS nicht zwangsläufig auf die Anwendung in ultraschnellen Experimenten beschränkt und kann sogar auf andere Beugungsexperimente, wie die mit Neutronen und Elektronen, ausgeweitet werden. KW - ultrafast KW - X-ray diffraction KW - thin films KW - magnetoelasticity KW - ultraschnell KW - Röntgenbeugung KW - dünne Filme KW - Magnetoelastizität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561098 ER - TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zhao, Siqi Q. A1 - Yan, Huirong A1 - Liu, Terry Z. A1 - Liu, Mingzhe A1 - Wang, Huizi T1 - Multispacecraft analysis of the properties of magnetohydrodynamic fluctuations in Sub-Alfvenic solar wind turbulence at 1 au JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present observations of three-dimensional magnetic power spectra in wavevector space to investigate the anisotropy and scalings of sub-Alfvenic solar wind turbulence at magnetohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power distributions are organized in a new coordinate determined by wavevectors ((kappa) over cap) and background magnetic field ((b) over cap (0)) in Fourier space. This study utilizes two approaches to determine wavevectors: the singular value decomposition method and multispacecraft timing analysis. The combination of the two methods allows an examination of the properties of magnetic field fluctuations in terms of mode compositions without any spatiotemporal hypothesis. Observations show that fluctuations (delta B-perpendicular to 1) in the direction perpendicular to (kappa) over cap and (b) over cap (0) prominently cascade perpendicular to (b) over cap (0), and such anisotropy increases with wavenumbers. The reduced power spectra of 6.8 11 follow Goldreich-Sridhar scalings: (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-5/3) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-2). In contrast, fluctuations within the (k) over cap(b) over cap (0) plane show isotropic behaviors: perpendicular power distributions are approximately the same as parallel distributions. The reduced power spectra of fluctuations within the (k) over cap(b) over cap (0) plane follow the scalings (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-3/2) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-3/2). Comparing frequency-wavevector spectra with theoretical dispersion relations of MHD modes, we find that delta B-perpendicular to 1 are probably associated with Alfven modes. On the other hand, magnetic field fluctuations within the (k) over cap(b) over cap (0) plane more likely originate from fast modes based on their isotropic behaviors. The observations of anisotropy and scalings of different magnetic field components are consistent with the predictions of current compressible MHD theory. Moreover, for the Alfvenic component, the ratio of cascading time to the wave period is found to be a factor of a few, consistent with critical balance in the strong turbulence regime. These results are valuable for further studies of energy compositions of plasma turbulence and their effects on energetic particle transport. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac822e SN - 0004-637X SN - 1538-4357 VL - 937 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER -