TY - THES A1 - Ba, Jianhua T1 - Nonaqueous synthesis of metal oxide nanoparticles and their assembly into mesoporous materials T1 - Nichtwässrige Synthese von Metalloxid-Nanopartikeln und deren Anordnung zu mesoporösen Materialien N2 - This thesis mainly consist of two parts, the synthesis of several kinds of technologically interesting crystalline metal oxide nanoparticles via nonaqueous sol-gel process and the formation of mesoporous metal oxides using some of these nanoparticles as building blocks via evaporation induced self-assembly (EISA) technique. In the first part, the experimental procedures and characterization results of successful syntheses of crystalline tin oxide and tin doped indium oxide (ITO) nanoparticles are reported. SnO2 nanoparticles exhibit monodisperse particle size (3.5 nm in average), high crystallinity and particularly high dispersibility in THF, which enable them to become the ideal particulate precursor for the formation of mesoporous SnO2. ITO nanoparticles possess uniform particle morphology, narrow particle size distribution (5-10 nm), high crystallinity as well as high electrical conductivity. The synthesis approaches and characterization of various mesoporous metal oxides, including TiO2, SnO2, mixture of CeO2 and TiO2, mixture of BaTiO3 and SnO2, are reported in the second part of this thesis. Mesoporous TiO2 and SnO2 are presented as highlights of this part. Mesoporous TiO2 was produced in the forms of both films and bulk material. In the case of mesoporous SnO2, the study was focused on the high order of the porous structure. All these mesoporous metal oxides show high crystallinity, high surface area and rather monodisperse pore sizes, which demonstrate the validity of EISA process and the usage of preformed crystalline nanoparticles as nanobuilding blocks (NBBs) to produce mesoporous metal oxides. N2 - Diese Arbeit besteht hauptsächlich aus zwei Teilen. Der erste Teil befasst sich mit der Synthese von mehreren technologisch wichtigen, kristallinen Metalloxid-Nanopartikeln mittels nichtwässriger Sol-Gel Chemie. Der zweite Teil beinhaltet die Herstellung von mesoporösen Metalloxiden. Dabei wurden ausgewählte Nanopartikel als Bausteine verwendet und durch langsames Verdampfen des Lösungsmittels in die entsprechenden porösen Strukturen überführt. Das experimentelle Vorgehen wie auch die Charakterisierung der erfolgreich hergestellten Zinnoxid- und Indiumzinnoxid-Nanopartikel sind im ersten Teil beschrieben. Die Zinnoxid-Nanpartikel zeichnen sich durch einheitliche Partikelgrösse (im Durchschnitt ca. 3.5 nm), hoher Kristallinität, und guter Dispergierbarkeit in Tetrahydrofuran aus. Diese Eigenschaften machen aus den Zinnoxid-Nanopartikeln die perfekten Bausteine für den Aufbau von mesoporösem Zinnoxid. Die Indiumzinnoxid-Nanopartikel haben eine einheitliche Partikelform, eine schmale Grösseverteilung (5-10 nm), hohe Kristallinität wie auch gute elektrische Leitfähigkeit. Die Synthese und Charakterisierung von verschiedenen mesoporösen Metalloxiden wie TiO2, SnO2, Mischungen von CeO2 und TiO2, wie auch Mischungen von BaTiO3 und SnO2 werden im zweiten Teil der Arbeit diskutiert. Mesoporöses TiO2 und SnO2 werden als besonders gelungene Beispiele herausgehoben. Mesoporöses TiO2 wurde in Form von Dünnfilmen wie auch als Bulkmaterial hergestellt. Im Falle von SnO2 galt das Augenmerk vor allem der hohen Ordnung der Mesoporen. Alle diese mesoporösen Materialien zeigen eine hohe Kristallinität, grosse Oberfläche und relativ einheitliche Porengrössen. Diese Eigenschaften unterstreichen, wie wertvoll der Ansatz ist, vorgeformte Nanopartikel als Bausteine für die Synthese von porösen Materialien zu verwenden. KW - Nanopartikel KW - transparent-leitendes Oxid KW - Selbstorganisation KW - nanoparticles KW - oxides KW - assembly KW - mesostructure Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10173 ER - TY - THES A1 - Rusu, Viorel Marin T1 - Composite materials made of chitosan and nanosized apatite : preparation and physicochemical characterization T1 - - N2 - Taking inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite were investigated. A new preparation approach based on a co-precipitation method has been developed. In its earlier stage of formation, the composite occurs as hydrogel as suspended in aqueous alkaline solution. In order to get solid composites various drying procedures including freeze-drying technique, air-drying at room temperature and at moderate temperatures, between 50oC and 100oC were used. Physicochemical studies showed that the composites exhibit different properties with respect to their structure and composition. IR and Raman spectroscopy probed the presence of both chitosan and hydroxyapatite in the composites. Hydroxyapatite as dispersed in the chitosan matrix was found to be in the nanosize range (15-50 nm) and occurs in a bimodal distribution with respect to its crystallite length. Two types of distribution domains of hydroxyapatite crystallites in the composite matrix such as cluster-like (200-400 nm) and scattered-like domains were identified by the transmission electron microscopy (TEM), X-ray diffraction (XRD) and by confocal scanning laser microscopy (CSLM) measurements. Relaxation NMR experiments on composite hydrogels showed the presence of two types of water sites in their gel networks, such as free and bound water. Mechanical tests showed that the mechanical properties of composites are one order of magnitude less than those of compact bone but comparable to those of porous bone. The enzymatic degradation rates of composites showed slow degradation processes. The yields of degradation were estimated to be less than 10% by loss of mass, after incubation with lysozyme, for a period of 50 days. Since the composite materials were found biocompatible by the in vivo tests, the simple mode of their fabrication and their properties recommend them as potential candidates for the non-load bearing bone substitute materials. N2 - Inspiriert von Natur, bei der Kompositmaterialien aus Polymermatrices und anorganischen Füllstoffen z.B. in Knochen, Krustentieren und Eierschalen vorzufinden sind, wurde die Herstellungsmöglichkeit von Kompositmaterial aus Chitosan und Hydroxyapatitdispersionen untersucht. Basierend auf einem Kopräzipitationsverfahren wurde eine neue Herstellungsmethode entwickelt, die als flexibler Zugang zu einem Spektrum von Komposittypen führt. In den frühen Phasen der Kompositbildung entsteht ein in der wässrigen alkalischen Lösung suspendiertes Hydrogel, das durch Filtration und Zentrifugation isoliert werden kann. IR und Ramanspektroskopie klären das Vorhandensein von Chitosan und Hydroxyapatit im Kompositmaterial. Hydroxyapatit ist als Nanopartikel der Größe von 15-50 nm in bimodaler Verteilung in der Chitosanmatrix dispersiert, und in durch Transmissionselektronenmikroskopie (TEM), X-Ray Diffraction (XRD) und Konfokaler Laserscanmikroskopie (CSLM) nachweisbaren 200-400 nm großen Clustern assembliert. NMR-Relaxationsmessungen an Hydrogelkompositmaterial decken die Existenz zweier Klassen vorkommenden Wassers im Netzwerk auf, gebundenes und freies Wasser. Mechanische Tests zeigen, dass die mechanische Festigkeit etwa eine Größenordnung unter der von massivem Knochen liegt, der Festigkeit von porösem Knochen aber gleichkommt. Enzymatische Abbauraten des Kompostimaterials sind als langsam einzuschätzen. Eine 50-tägige Einwirkzeit von Lysozym führte zu einem Abbau von 10 % der Kompositmasse. Die sich durch in vivo Tests herausstellende Biokompatibilität, die einfachen Herstellungsmöglichkeiten und die physikochemischen Eigenschaften empfehlen dieses Material als vielversprechenden Kandidaten für Knochenersatzmaterial in mäßig belasteten Bereichen. KW - Chitosan KW - Hydroxyapatit KW - Nanopartikel KW - Kompositmaterial KW - Chitosan KW - hydroxyapatite KW - nanoparticles KW - composites Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-2316 ER - TY - THES A1 - Sobal, Neli T1 - Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung N2 - Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen können diese sowohl mit einer hohen Sättigungsmagnetisierung und Koerzitivfeldstärke als mit besserer Oxidationsbeständigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden für die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-Hülle-Struktur (Kern@Hülle) präsentiert. Bei der überwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem Lösungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen Lösungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. % beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-Hülle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalthülle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und Röntgenzirkulardichroismus (XMCD) dafür eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schlüsse über die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die möglichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. Röntgendiffraktometrie (XRD), Röntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive Röntgenfluoreszensanalyse (EDX) wurden verwendet. N2 - Magnetic colloidal particles are attractive because of their possible application to ultra-high-density magnetic data storage media, sensors, electronic devices and medical diagnostics. The properties of small particles depend on their composition, shape, and method of preparation. The combination of 3d-metals (Fe, Co, Ni) with noble metals improves the stability of the colloids and leads to new properties of the magnetic systems, often distinct from those of the corresponding monometallic particles. Core-shell particles, where dia- or paramagnetic noble metal-cores are surrounded by a ferromagnetic Co-shell, are an interesting system to study surface and interfacial magnetism such as an induced polarization or a giant magnetoresistance effect. In this work, new synthetic routes for the preparation of monometallic (Pt, Pd, Ag) and bimetallic magnetic nanocrystals (Ag@Co, Pt@Co, Pd@Co) with core-shell structure are presented. Stable colloids with a narrow particle size distribution were obtained in organic solvents using methods of wet chemistry. The method of preparation of Ag@Co is based on the thermal decomposition of dicobalt octycarbonyl in combination with a transmetalation reaction with water free AgClO4. The cobalt amount in the Ag@Co system could be tuned from 5 to 73 at. %. The average diameter of the particles was varied from 5 to 15 nm. The reduction of platinum and palladium salts in organic solution using long chained alcohol as the reductant leads to stable metal nanostructures. Monodisperse Pd and Pt particles with average sizes of 1.7 to 7.0 nm were synthesized via thermal decomposition of metal-surfactant complexes too. Alkylamines and alkylphosphines were used in this procedure. The thickness of the Co-shell was controlled by a simple high-temperature thermolysis of dicobalt octacarbonyl at the presence of Pd and Pt seeds and was tunable from 0.5 to 2.5 nm. The crystalline structure of the samples was characterized by transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX), UV-VIS and electron-energy loss spectroscopy (EELS). SQUID magnetometry, x-ray magnetic circular dichroism (XMCD) and extended x-ray absorption fine structure (EXAFS) measurements gave information about the magnetic properties of the bimetallic systems and revealed their dependency on the particle size and the chemical composition. A high spin to orbital moments ratio µL/µS of 0.26±0.06 for Ag@Co and 0.22±0.05 for Pt@Co nanocrystals was observed at XMCD measurements due to the lowered dimensionality the investigated systems. KW - Kolloid KW - AgCo KW - PtCo KW - PdCo KW - TEM KW - EDX KW - EELS KW - XMCD KW - Kern-Hülle KW - Herstellung KW - Nanopartikel KW - Kobaltcarbonyl KW - Acetylacetonat KW - Colloid KW - AgCo KW - PtCo KW - PdCo KW - TEM KW - EDX KW - EELS KW - XMCD KW - core-shell KW - synthesis KW - nanoparticles KW - organic solvent KW - decomposition KW - reduction KW - cobalt dicarbonyl KW - a Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001071 ER -