TY - JOUR A1 - Reinicke, Stefan A1 - Rees, Huw C. A1 - Espeel, Pieter A1 - Vanparijs, Nane A1 - Bisterfeld, Carolin A1 - Dick, Markus A1 - Rosencrantz, Ruben R. A1 - Brezesinski, Gerald A1 - de Geest, Bruno G. A1 - Du Prez, Filip E. A1 - Pietruszka, Jörg A1 - Böker, Alexander T1 - Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique JF - ACS applied materials & interfaces N2 - A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided. KW - Langmuir-Schaefer KW - enzyme immobilization KW - 2-deoxy-D-ribose-5-phosphate aldolase KW - polymeric thin film KW - poly(N-isopropylacrylamide) KW - thiolactone Y1 - 2017 U6 - https://doi.org/10.1021/acsami.6b13632 SN - 1944-8244 VL - 9 SP - 8317 EP - 8326 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hentrich, Doreen A1 - Taabache, Soraya A1 - Brezesinski, Gerald A1 - Lange, Nele A1 - Unger, Wolfgang A1 - Kuebel, Christian A1 - Bertin, Annabelle A1 - Taubert, Andreas T1 - A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization JF - Macromolecular bioscience N2 - The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air-liquid interface. The amphiphile forms stable monomolecular films at the airliquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects. Y1 - 2017 U6 - https://doi.org/10.1002/mabi.201600524 SN - 1616-5187 SN - 1616-5195 VL - 17 SP - 2541 EP - 2548 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hentrich, Doreen A1 - Brezesinski, Gerald A1 - Kuebel, Christian A1 - Bruns, Michael A1 - Taubert, Andreas T1 - Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - The article describes the phase behavior of cholesteryl hemisuccinate at the air-liquid interface and its effect on calcium phosphate (CP) mineralization. The amphiphile forms stable monolayers with phase transitions at the air-liquid interface from a gas to a tilted liquid-condensed (TLC) and finally to an untilted liquid-condensed (ULC) phase. CP mineralization beneath these monolayers leads to crumpled CP layers made from individual plates. The main crystal phase is octacalcium phosphate (OCP) along with a minor fraction of hydroxyapatite (HAP), as confirmed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, bright field transmission electron microscopy, and electron diffraction. Y1 - 2017 U6 - https://doi.org/10.1021/acs.cgd.7b00753 SN - 1528-7483 SN - 1528-7505 VL - 17 SP - 5764 EP - 5774 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/C4CE02274B SN - 1466-8033 IS - 17 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - London ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Boerner, Hans G. A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/c4ce02274b SN - 1466-8033 VL - 17 IS - 36 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Roxlau, Julian A1 - Brezesinski, Gerald A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Photosensitive surfactants: Micellization and interaction with DNA JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex. Y1 - 2014 U6 - https://doi.org/10.1063/1.4862678 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Teixeira, C. V. A1 - Blanzat, Muriel A1 - Koetz, Joachim A1 - Rico-Lattes, I. A1 - Brezesinski, Gerald T1 - In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids JF - Biochimica et biophysica acta : Biomembranes N2 - SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem 16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC) to establish the phase diagram. Gem 16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed. KW - SAXS KW - bilayer KW - gemini surfactant KW - ordering process KW - Anti-HIV KW - miscibility Y1 - 2006 U6 - https://doi.org/10.1016/j.bbamem.2006.05.025 SN - 0005-2736 VL - 1758 SP - 1797 EP - 1808 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poloucek, P. A1 - Pietsch, Ullrich A1 - Geue, Thomas A1 - Symietz, Christian A1 - Brezesinski, Gerald T1 - X-ray reflectivity analysis of thin complex Langmuir-Blodgett films Y1 - 2001 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Grenzer, Jörg A1 - Geue, Thomas A1 - Neißendorfer, Frank A1 - Brezesinski, Gerald A1 - Symietz, Christian A1 - Möhwald, Helmuth A1 - Gudat, Wolfgang T1 - The energy dispersive reflectometer at BESSY II : a challenge for thin film analysis Y1 - 2001 SN - 0167- 5087 ER - TY - JOUR A1 - Struth, Bernd A1 - Decher, Gero A1 - Schmitt, J. A1 - Hofmeister, Wolfgang A1 - Neißendorfer, Frank A1 - Pietsch, Ullrich A1 - Brezesinski, Gerald A1 - Möhwald, Helmuth T1 - Chemical modification of Topaz surfaces Y1 - 1999 SN - 0928-4931 ER -