TY - BOOK A1 - Neumann, Stefan A1 - Giese, Holger T1 - Scalable compatibility for embedded real-time components via language progressive timed automata N2 - The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis. N2 - Die korrekte Komposition individuell entwickelter Komponenten von eingebetteten Realzeitsystemen ist eine Herausforderung, da neben funktionalen Eigenschaften auch nicht funktionale Eigenschaften berücksichtigt werden müssen. Ein Beispiel hierfür ist die Kompatibilität von Realzeiteigenschaften, welche eine entscheidende Rolle in eingebetteten Systemen spielen. Heutzutage wird die Kompatibilität derartiger Eigenschaften in einer aufwändigen Integrations- und Konfigurationstests am Ende des Entwicklungsprozesses geprüft, wobei diese Tests im schlechtesten Fall fehlschlagen. Aus diesem Grund wurde eine Zahl an formalen Verfahren Entwickelt, welche eine frühzeitige Analyse von Realzeiteigenschaften von Komponenten erlauben, sodass Inkompatibilitäten von Realzeiteigenschaften in späteren Phasen ausgeschlossen werden können. Existierenden Verfahren verlangen jedoch, dass eine Reihe von Bedingungen erfüllt sein muss, welche von realen Systemen nur schwer zu erfüllen sind, oder aber, die verwendeten Analyseverfahren skalieren nicht für größere Systeme. In dieser Arbeit wird ein Ansatz vorgestellt, welcher auf dem formalen Modell des Timed Automaton basiert und der keine Bedingungen verlangt, die von einem realen System nur schwer erfüllt werden können. Der in dieser Arbeit vorgestellte Ansatz enthält ein Framework, welches eine modulare Analyse erlaubt, bei der ausschließlich miteinender kommunizierende Komponenten paarweise überprüft werden müssen. Somit wird eine skalierbare Analyse von Realzeiteigenschaften ermöglicht, die keine Bedingungen verlangt, welche nur bedingt von realen Systemen erfüllt werden können. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 65 KW - Formale Verifikation KW - Realzeitsysteme KW - Eingebettete Systeme KW - Timed Automata KW - verification KW - real-time systems KW - timed automata KW - embedded-systems Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63853 SN - 978-3-86956-226-1 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Krause, Christian A1 - Giese, Holger T1 - Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata N2 - One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities. N2 - Eine der wichtigsten Herausforderungen in der Entwicklung von Service-orientierten Systemen ist die Vorhersage und die Zusicherung von nicht-funktionalen Eigenschaften, wie Ausfallsicherheit und Verfügbarkeit von zusammengesetzten, interorganisationellen Diensten. Diese Systeme sind oft charakterisiert durch eine Vielzahl von inhärenten Unsicherheiten, welche sowohl in der Modellierung als auch in der Analyse eine Rolle spielen. Die verschiedenen relevanten Arten von Unsicherheiten können eingeteilt werden in (1) epistemische Unsicherheiten aufgrund von unvollständigem Wissen und (2) Zufall als Mittel in Protokollen oder als Resultat von physikalischen Prozessen. In diesem Bericht wird ein probabilistisches, Zeit-behaftetes Modell untersucht, welches es ermöglicht quantitative Aussagen über nicht-funktionale Eigenschaften von einer eingeschränkten Klasse von Service-orientierten Echtzeitsystemen mittels formaler Methoden zu treffen. Zur Motivation und Einordnung wird ein Anforderungskatalog für probabilistische Echtzeitsysteme mit Unsicherheiten erstellt und gezeigt, dass die Unsicherheiten vom Typ (1) und (2) in den untersuchten Systemen einen Ein uss auf die Wahl der Modellierungs- und der Analysemethode haben. Als formales Modell werden Interval Probabilistic Timed Automata (IPTA) benutzt. Basierend auf den erarbeiteten Anforderungen wird gezeigt, dass dieses Modell sowohl ausreichende Ausdrucksstärke für eine realistische und modulare Spezifikation als auch geeignete formale Methoden zur Bestimmung von quantitativen Sicherheits- und Zuverlässlichkeitseigenschaften bietet. Als technisches Mittel für die quantitative Analyse wird probabilistisches Model Checking, speziell probabilistische Zeit-beschränkte Erreichbarkeitsanalyse und Bestimmung von Erwartungswerten für Kosten und Vergütungen eingesetzt. Um die quantitative Analyse mittels probabilistischem Model Checking durchzuführen, wird eine Erweiterung des Prism-Werkzeugs zur Modellierung und Analyse von IPTA eingeführt. Die präsentierte Erweiterung von Prism ermöglicht die Modellierung von probabilistischen Unsicherheiten mittelsWahrscheinlichkeitsintervallen, wie sie für IPTA benötigt werden. Zur Verifikation wird probabilistische Erreichbarkeitsanalyse und die Berechnung von Erwartungswerten durch das Werkzeug unterstützt. Es wird die Performanz der Prism-Erweiterung untersucht und der Intervall-basierte IPTA-Ansatz mit Modellen mit festen Wahrscheinlichkeitswerten verglichen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 56 KW - Service-orientierte Systme KW - Echtzeitsysteme KW - Quantitative Analysen KW - Formale Verifikation KW - service-oriented systems KW - real-time systems KW - quantitative analysis KW - formal verification methods Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57845 SN - 978-3-86956-171-4 PB - Universitätsverlah Potsdam CY - Potsdam ER -