TY - JOUR A1 - Block, Benjamin D. A1 - Denfeld, Blaize A. A1 - Stockwell, Jason D. A1 - Flaim, Giovanna A1 - Grossart, Hans-Peter A1 - Knoll, Lesley B. A1 - Maier, Dominique B. A1 - North, Rebecca L. A1 - Rautio, Milla A1 - Rusak, James A. A1 - Sadro, Steve A1 - Weyhenmeyer, Gesa A. A1 - Bramburger, Andrew J. A1 - Branstrator, Donn K. A1 - Salonen, Kalevi A1 - Hampton, Stephanie E. T1 - The unique methodological challenges of winter limnology JF - Limnology and Oceanography: Methods N2 - Winter is an important season for many limnological processes, which can range from biogeochemical transformations to ecological interactions. Interest in the structure and function of lake ecosystems under ice is on the rise. Although limnologists working at polar latitudes have a long history of winter work, the required knowledge to successfully sample under winter conditions is not widely available and relatively few limnologists receive formal training. In particular, the deployment and operation of equipment in below 0 degrees C temperatures pose considerable logistical and methodological challenges, as do the safety risks of sampling during the ice-covered period. Here, we consolidate information on winter lake sampling and describe effective methods to measure physical, chemical, and biological variables in and under ice. We describe variation in snow and ice conditions and discuss implications for sampling logistics and safety. We outline commonly encountered methodological challenges and make recommendations for best practices to maximize safety and efficiency when sampling through ice or deploying instruments in ice-covered lakes. Application of such practices over a broad range of ice-covered lakes will contribute to a better understanding of the factors that regulate lakes during winter and how winter conditions affect the subsequent ice-free period. Y1 - 2018 U6 - https://doi.org/10.1002/lom3.10295 SN - 1541-5856 VL - 17 IS - 1 SP - 42 EP - 57 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zupok, Arkadiusz A1 - Iobbi-Nivol, Chantal A1 - Mejean, Vincent A1 - Leimkühler, Silke T1 - The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria JF - Metallomics : integrated biometal science N2 - Bacterial molybdoenzymes are key enzymes involved in the global sulphur, nitrogen and carbon cycles. These enzymes require the insertion of the molybdenum cofactor (Moco) into their active sites and are able to catalyse a large range of redox-reactions. Escherichia coli harbours nineteen different molybdoenzymes that require a tight regulation of their synthesis according to substrate availability, oxygen availability and the cellular concentration of molybdenum and iron. The synthesis and assembly of active molybdoenzymes are regulated at the level of transcription of the structural genes and of translation in addition to the genes involved in Moco biosynthesis. The action of global transcriptional regulators like FNR, NarXL/QP, Fur and ArcA and their roles on the expression of these genes is described in detail. In this review we focus on what is known about the molybdenum- and iron-dependent regulation of molybdoenzyme and Moco biosynthesis genes in the model organism E. coli. The gene regulation in E. coli is compared to two other well studied model organisms Rhodobacter capsulatus and Shewanella oneidensis. Y1 - 2019 U6 - https://doi.org/10.1039/c9mt00186g SN - 1756-5901 SN - 1756-591X VL - 11 IS - 10 SP - 1602 EP - 1624 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Zhang, Xiaorong A1 - Yarman, Aysu A1 - Wollenberger, Ulla A1 - Gyurcsányi, Róbert E. T1 - Molecularly imprinted polymer-based electrochemical sensors for biopolymers JF - Current opinion in electrochemistry N2 - Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one ‘separation plate’; thus, the selectivity does not reach the values of ‘bulk’ measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an ‘overall apparent’ signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively. KW - Electropolymerization KW - Direct electron transfer KW - Redox marker KW - Epitope imprinting KW - Biomarker Y1 - 2018 U6 - https://doi.org/10.1016/j.coelec.2018.12.005 SN - 2451-9103 VL - 14 SP - 53 EP - 59 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yamamichi, Masato A1 - Klauschies, Toni A1 - Miner, Brooks E. A1 - van Velzen, Ellen T1 - Modelling inducible defences in predator-prey interactions BT - assumptions and dynamical consequences of three distinct approaches JF - Ecology letters N2 - Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator-prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator-prey dynamics and from commonly observed eco-evolutionary dynamics with evolving, but non-inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on. KW - Adaptive dynamics KW - fitness gradient KW - inducible defence KW - optimal trait KW - phenotypic plasticity KW - predator-prey dynamics KW - reaction norm KW - switching function Y1 - 2019 U6 - https://doi.org/10.1111/ele.13183 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 2 SP - 390 EP - 404 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Grossart, Hans-Peter A1 - Van den Wyngaert, Silke A1 - Kagami, Maiko A1 - Wurzbacher, Christian A1 - Cunliffe, Michael A1 - Rojas-Jimenz, Keilor T1 - Fungi in aquatic ecosystems JF - Nature reviews. Microbiology N2 - Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats. Y1 - 2019 U6 - https://doi.org/10.1038/s41579-019-0175-8 SN - 1740-1526 SN - 1740-1534 VL - 17 IS - 6 SP - 339 EP - 354 PB - Nature Publ. Group CY - Basingstoke ER - TY - JOUR A1 - Jaric, Ivan A1 - Heger, Tina A1 - Monzon, Federico Castro A1 - Jeschke, Jonathan M. A1 - Kowarik, Ingo A1 - McConkey, Kim R. A1 - Pysek, Petr A1 - Sagouis, Alban A1 - Essl, Franz T1 - Crypticity in Biological Invasions JF - Trends in Ecology & Evolution N2 - Ecological effects of alien species can be dramatic, but management and prevention of negative impacts are often hindered by crypticity of the species or their ecological functions. Ecological functions can change dramatically over time, or manifest after long periods of an innocuous presence. Such cryptic processes may lead to an underestimation of long-term impacts and constrain management effectiveness. Here, we present a conceptual framework of crypticity in biological invasions. We identify the underlying mechanisms, provide evidence of their importance, and illustrate this phenomenon with case studies. This framework has potential to improve the recognition of the full risks and impacts of invasive species. Y1 - 2019 U6 - https://doi.org/10.1016/j.tree.2018.12.008 SN - 0169-5347 SN - 1872-8383 VL - 34 IS - 4 SP - 291 EP - 302 PB - Elsevier CY - London ER - TY - JOUR A1 - Langhammer, Maria A1 - Thober, Jule A1 - Lange, Martin A1 - Frank, Karin A1 - Grimm, Volker T1 - Agricultural landscape generators for simulation models BT - a review of existing solutions and an outline of future directions JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - There is an increasing need for an assessment of the impacts of land use and land use change (LUCC). In this context, simulation models are valuable tools for investigating the impacts of stakeholder actions or policy decisions. Agricultural landscape generators (ALGs), which systematically and automatically generate realistic but simplified representations of land cover in agricultural landscapes, can provide the input for LUCC models. We reviewed existing ALGs in terms of their objectives, design and scope. We found eight ALGs that met our definition. They were based either on generic mathematical algorithms (pattern-based) or on representations of ecological or land use processes (process-based). Most ALGs integrate only a few landscape metrics, which limits the design of the landscape pattern and thus the range of applications. For example, only a few specific farming systems have been implemented. We conclude that existing ALGs contain useful approaches that can be used for specific purposes, but ideally generic modular ALGs are developed that can be used for a wide range of scenarios, regions and model types. We have compiled features of such generic ALGs and propose a possible software architecture. Considerable joint efforts are required to develop such generic ALGs, but the benefits in terms of a better understanding and development of more efficient agricultural policies would be high. KW - Agricultural landscape KW - Field pattern KW - Agricultural landscape generator KW - Landscape simulator KW - Neutral landscape model KW - Process-based model Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2018.12.010 SN - 0304-3800 SN - 1872-7026 VL - 393 SP - 135 EP - 151 PB - Elsevier CY - Amsterdam ER -