TY - JOUR A1 - Wegener, Michael A1 - Bergweiler, Steffen A1 - Zscherpel, Detlef A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Detection of elliptical oscillations and monopole breathing of organ-pipe bodies with piezoelectric polymer sensors N2 - In this paper, a measuring technique is presented for the detection of radial oscillations of tube walls excited by changes in internal air pressure. On organ pipes, the oscillations were investigated by means of piezoelectric polymer films slightly tensioned around the pipe bodies. Employing sensors with patterned electrodes, the well-known elliptical oscillation of the cross section as well as an additional monopole breathing of the organ-pipe body were detected. For the monopole breathing, a close relationship between the pressure distribution of the air-column resonances inside the pipe and the circumference variations along the pipe was observed Y1 - 2006 ER - TY - JOUR A1 - Wegener, Michael A1 - Tuncer, Enis A1 - Gerhard, Reimund A1 - Bauer, Siegfried T1 - Elastic properties and electromechanical coupling factor of inflated polypropylene ferroelectrets Y1 - 2006 SN - 1-4244-0547-5 ER - TY - JOUR A1 - Mellinger, Axel A1 - Flores Suárez, Rosaura A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Lang, Sidney B. A1 - Gerhard, Reimund T1 - High-resolution space-charge and polarization tomography with thermal pulses N2 - Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I&M) Chapter ausgezeichnet. Y1 - 2006 SN - 3-8007-2939-3 ER - TY - JOUR A1 - Saarimäki, Eetta A1 - Paajanen, Mika A1 - Savijärvi, Ann-Mari A1 - Minkkinen, Hannu A1 - Wegener, Michael A1 - Voronina, Olena A1 - Schulze, Robert A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Novel heat durable electromechanical film : processing for electromechanical and electret applications N2 - New ferroelectrets were developed on the basis of foams from cyclo-olefin polymers and copolymers. The results obtained on the cyclo-olefin polymer foam demonstrate a significant improvement of the service temperature for ferroelectret transducer materials. Suitable compounding and preparation led to cyclo-olefin ferroelectrets with an electromechanical activity of around 15 pC/N, which is thermally stable at least up to 110 degrees C. The properties in sensor and actuator applications are strongly dependent on the processing parameters related to film-making, sensor and actuator preparation, gas content and electric charging. The processing window for the film stretching was very narrow compared to the earlier developed polypropylene ferroelectrets. The film porosity, softness and thus the electromechanical activity are adjusted by gas-diffusion expansion. The activity of the electromechanically operating sensors and actuators was increased by stacking several layers of cellular cyclo-olefin film. For applications such as flat loudspeakers, the foamed films are tuned by tensioning them on a support frame. Correct tensioning was essential also for reducing the distortion levels. Y1 - 2006 ER - TY - JOUR A1 - Wegener, Michael A1 - Künstler, Wolfgang A1 - Gerhard, Reimund T1 - Poling behavior and optical absorption of partially dehydrofluorinated and uniaxially stretched polyvinylidene fluoride N2 - Polyvinylidene fluoride was dissolved together with solid sodium hydroxide as catalyst in a dimethylsulfoxide/ acetone mixture and moderately dehydrofluorinated. The dehydrofluorination leads to a partial degradation of the fluorohydrocarbons, and in particular to main-chain scission and to formation of carbon double or triple bonds. This enhances the absorption at UV-vis frequencies. The degradation process also generates a large amount of excess charges in the polymer, which influence the electrical polarization behavior of the dehydrofluorinated polymer. Uniaxial stretching of moderately dehydrofluorinated polyvinylidene fluoride leads to films in a polar phase. Dipole polarization in the degraded and stretched films is demonstrated by means of switching experiments Y1 - 2006 U6 - https://doi.org/10.1080/00150190600694761 ER - TY - JOUR A1 - Wegener, Michael A1 - Wirges, Werner A1 - Tiersch, Brigitte T1 - Porous polytetrafluoroethylene (PTFE) electret films : porosity and time dependent charging behaviour of the free surface N2 - Electrically charged porous polytetrafluoroethylene (PTFE) films are often discussed as active layers for electromechanical transducers. Here, the electric charging behavior of open-porous PTFE films with different porosities is investigated. Optimized electric charging of porous PTFE films is determined by variation of charging parameters such as electric fields and charging times. Maximum surface potentials are depending on the porosity of the PTFE films. Suitable charging leads to high surface potentials observed on non-stretched or slightly stretched porous PTFE films. Further increase of charging fields yields decreasing values of the surface potential accompanied with an increase of conductivity. Y1 - 2006 UR - http://www.springerlink.com/content/601u86x365560515/ U6 - https://doi.org/10.1007/s10934-006-9015-0 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites N2 - Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity Y1 - 2006 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites Y1 - 2006 ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Singh, Rajeev T1 - Thermal-pulse tomography of polarization distributions in a cylindrical geometry JF - IEEE transactions on dielectrics and electrical insulation N2 - Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries. Y1 - 2006 U6 - https://doi.org/10.1109/TDEI.2006.258210 SN - 1070-9878 VL - 13 IS - 5 SP - 1030 EP - 1035 PB - IEEE CY - Piscataway ER -