TY - THES A1 - von Bismarck, Thekla T1 - The influence of long-term light acclimation on photosynthesis in dynamic light N2 - Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4). We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin. For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators. In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation. N2 - Photosynthese wandelt Lichtenergie in metabolische Energie um, welche das Pflanzenwachstum antreibt. In der Natur wird die Verfügbarkeit von Licht von vielerlei Faktoren auf unterschiedlichen Zeitskalen beeinflusst, z. B. von der Beschattung durch Blätter innerhalb von Sekunden bis hin zu jahreszeitlichen Veränderungen über Monate. Fluktuationen in der Lichtenergieverfügbarkeit in der Natur kann die Biomasseakkumulation der Pflanzen limitieren. Pflanzen haben verschiedene Strategien entwickelt, um stark fluktuierendes Licht nutzen zu können. Diese reichen von der langfristigen Optimierung der Blattmorphologie und Physiologie und des Gehalts an Pigmenten und Proteinen in dem Prozess der Lichtakklimatisierung bis hin zu schnellen Veränderungen der Proteinaktivität innerhalb von Sekunden. Daher kann die Aufdeckung der Art und Weise, wie Pflanzen mit FL auf verschiedenen Zeitskalen umgehen, wichtige Ideen zur Verbesserung der Ernteerträge liefern. Die Photosynthese ist kein isolierter Prozess, sondern steht in enger Interaktion mit den nachgeschalteten Stoffwechselwegen. Daher benötigen wir mechanistisches Verständnis, wie Lichtakklimatisierung die dynamische Photosynthese als auch deren Interaktion mit Downstream-Metabolismus moduliert. Dafür haben wir den Einfluss von Lichtakklimatisierung auf i) die Funktion der schnellen Photosyntheseregulatoren KEA3 und VCCN1 in der dynamischen Photosynthese und ii) die flexible Interaktion von Photorespiration mit Photosynthese analysiert. Im ersten Themenkomplex (i) wurden die Auswirkungen verschiedener Wachstumslicht-bedingungen auf Photosynthese und Photoprotektion anhand von kea3- und vccn1-Mutanten quantifiziert. Zum einen konnten wir zeigen, dass neben der photosynthetischen Kapazität auch die Aktivitäten von VCCN1 und KEA3 während eines Hochlichtpulses mit der Wachstumslichtintensität korrelierten. Dies deutet auf eine Regulierung beider Proteine durch die Kapazität des Downstream-Metabolismus hin. Zum anderen beschleunigte KEA3 die Kinetik des photoprotektiven nicht-photochemischen Quenchings (NPQ) auf zweifache Weise: Direkt über die Herabregulierung der lumenalen Protonenkonzentration, was den pH-abhängigen NPQ deaktivierte, und indirekt über die Unterdrückung der Akkumulation des photoprotektiven Pigments Zeaxanthin. Für das zweite Thema (ii) untersuchten wir die Rolle des photorespiratorischen Metabolismus (PR), welcher ein toxisches Nebenprodukt der Kohlenstofffixierungsreaktionen recycelt, in der metabolischen Flexibilität in einer sich dynamisch verändernden Lichtumgebung. Dazu verwendeten wir die Mutanten hpr1 und ggt1 mit teilweise blockiertem PR Flux. Unsere Daten widerlegen, im Gegensatz zu früheren Berichten, eine allgemein größere physiologische Bedeutung von PR unter dynamischen Lichtbedingungen. Die beiden Mutanten zeigten ausgeprägte und distinkte metabolische Veränderungen während der Akklimatisierung an eine Bedingung mit höherer photosynthetischer Aktivität. Dies zeigt, dass PR nicht ausschließlich als zyklischer Entgiftungsweg für 2PG angesehen werden kann. Vielmehr ist PR tief in den pflanzlichen Stoffwechsel eingebettet, wobei GGT1 und HPR1 als distinkte Stellschrauben des Downstream-Metabolismus agieren. Zusammenfassend liefert die vorliegende Arbeit weitere Erkenntnisse darüber, wie die energetische und metabolische Flexibilität durch kurzfristige Regulatoren und den photorespiratorischen Metabolismus während der langfristigen Lichtakklimatisierung gewährleistet wird. KW - photosynthesis KW - fluctuating light KW - Arabidopsis thaliana KW - Photosynthese KW - fluktuierendes Licht Y1 - 2023 ER - TY - THES A1 - Rolo, David T1 - Assembly of photosystem I in thylakoid membranes T1 - Die Assemblierung des Photosystems I in der Thylakoidmembran N2 - The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation. N2 - Die Lichtreaktionen der Photosynthese werden von einer Reihe von Multiproteinkomplexen durchgeführt, die in Thylakoidmembranen eingebettet sind. Hier katalysiert das Photosystem I (PSI), das als Plastocyanin-Ferderoxin-Oxidoreduktase fungiert, die letzte Reaktion. Zusammen mit der lichtsammelnden Antenne I bildet PSI einen hochmolekularen Superkomplex von etwa 600 kDa, der aus achtzehn Untereinheiten und fast zweihundert Co-Faktoren besteht. Der Zusammenbau der verschiedenen Komponenten zu einem funktionsfähigen Thylakoidmembrankomplex erfordert eine präzise Koordination, die durch den Assemblierungsapparat gewährleistet wird. Obwohl dieser eine kleine Anzahl von Proteinen (PSI-Assemblierungsfaktoren) umfasst, die nachweislich eine Rolle bei der Bildung des PSI spielen, ist der Prozess als Ganzes sowie die Komplexität seiner Mitglieder noch weitgehend unerforscht. In der vorliegenden Arbeit wurden zwei Ansätze verwendet, um Kandidaten für PSI-Assemblierungsfaktoren zu finden. Erstens wurde EnsembleNet verwendet, um Proteine auszuwählen, von denen angenommen wird, dass sie funktionell mit bekannten PSI-Assemblierungsfaktoren in Arabidopsis thaliana verwandt sind (Ansatz I), und zweitens wurde eine Co-Immunopräzipitation (Co-IP) von markierten PSI-Assemblierungsfaktoren in Nicotiana tabacum durchgeführt (Ansatz II). Dabei wurden die neuartigen PSI-Assemblierungsfaktoren mit der Bezeichnung CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) und Ycf4-INTERACTING PROTEIN 1 (Y4IP1) identifiziert. A. thaliana Nullmutanten für CEPA1 und Y4IP1 zeigten einen Wachstumsphänotyp und blasse Blätter im Vergleich zum Wildtyp. Biophysikalische Experimente unter Verwendung der Pulsamplitudenmodulation (PAM) zeigten einen unzureichenden Elektronentransport auf der PSII-Akzeptorseite. Biochemische Analysen ergaben, dass sowohl CEPA1 als auch Y4IP1 spezifisch an der PSI-Akkumulation in A. thaliana auf posttranslationaler Ebene beteiligt, jedoch nicht essentiell sind. Entsprechend ihrer Rolle als Faktoren für den Aufbau eines Thylakoidmembran-Proteinkomplexes sind die beiden Proteine an Thylakoidmembranen lokalisiert. Bemerkenswerterweise wiesen cepa1 y4ip1-Doppelmutanten in frühen Entwicklungsstadien unter photoautotrophem Wachstum tödliche Phänotypen auf. Schließlich untermauerten Co-IP- und native Gelexperimente eine mögliche Rolle von CEPA1 und Y4IP1 bei der Vermittlung des PSI-Aufbaus in Verbindung mit anderen PSI-Aufbaufaktoren (z. B. PPD1- und PSA3-CEPA1, und Ycf4-Y4IP1). Die Tatsache, dass CEPA1 und Y4IP1 ausschließlich in Grünalgen und höheren Pflanzen vorkommen, lässt auf eukaryontenspezifische Funktionen schließen. Obwohl die spezifischen Mechanismen noch weiter untersucht werden müssen, sind CEPA1 und Y4IP1 zwei neuartige Assemblierungsfaktoren, die zur PSI-Bildung beitragen. KW - photosynthesis KW - photosystem I KW - biogenesis KW - thylakoid membranes KW - assembly factor KW - Photosynthese KW - Photosystem I KW - Biogenese KW - Thylakoidmembran KW - Assemblierungsfaktor Y1 - 2023 ER - TY - THES A1 - Kappel, Sandrine T1 - Photosynthesis in fluctuating light BT - pgr5 suppressor mutant screen : low NPQ mutant identification and characterization N2 - Light is the essential energy source for plants to drive photosynthesis. In nature, light availability is highly variable and often fluctuates on very short time scales. As a result, plants developed mechanisms to cope with these fluctuations. Understanding how to improve light use efficiency in natural fluctuating light (FL) conditions is a major target for agronomy. In the first project, we identified an Arabidopsis thaliana plant that showed reduced levels of rapidly inducible non-photochemical quenching (NPQ). This plant was devoid of any T-DNA insertion. Using a mapping-by-sequencing approach, we successfully located the causal genomic region near the end of chromosome 4. Through variant investigations in that region, we identified a deletion of about 20 kb encompassing 9 genes. By complementation analysis, we confirmed that one of the deleted genes, VTC2, is the causal gene responsible for the low NPQ. Loss of VTC2 decreased NPQ particularly in old leaves, with young leaves being only slightly affected. Additionally, ascorbate levels were almost abolished in old leaves, likely causing the NPQ decrease by reducing the activity of the xanthophyll cycle. Although ascorbate levels in younger leaves were reduced compared to wild-type plants, they remained at a comparably higher level. This difference may be due to the VTC2 paralog VTC5, which is expressed at a higher level in young leaves than in old ones. Plants require the PROTON GRADIENT REGULATION 5 (PGR5) protein for survival in FL. pgr5 mutants die because they fail to increase the luminal proton concentration in response to high light (HL) phases. A rapid elevation in ∆pH is needed to slow down electron transport through the Cytochrome b6 f complex (photosynthetic control). In FL, such lack of control in the pgr5 mutants results in photosystem I (PSI) overreduction, reactive oxygen species (ROS) production, and cell death. Decreases in photosystem II (PSII) activity introduced by crossing pgr5 with PSII deficient mutants rescued the lethality of pgr5 in FL. PGR5 was suggested to act as part of the ferredoxin-plastoquinone reductase (FQR), involved in cyclic electron transfer around PSI. However, the proposed molecular role of PGR5 remains highly debated. To learn more about PGR5 function, we performed a forward genetic screen in Arabidopsis thaliana to identify EMS-induced suppressor mutants surviving longer when grown in FL compared to pgr5 mutants (referred to as ”suppressor of pgr5 lethality in fluctuating light”, splf ). 11 different candidate genes were identified in a total of 22 splf plants. Mutants of seven of these genes in the pgr5 background showed low Fv/Fm values when grown in non-fluctuating low light (LL). Five of these 4genes were previously reported to have a role in PSII biogenesis or function. Two others, RPH1 and a DEAD/DEAH box helicase (AT3G02060), have not been linked to PSII function before. Three of splf candidate genes link to primary metabolism, fructose-2,6-bisphosphatase (F2KP ), udp-glucose pyrophosphorylase 1 (UGP1 ) and ferredoxin-dependent glutamate synthase (Fd-GOGAT ). They are characterized by the fact that they survive longer in FL than pgr5 mutants but do not procede beyond the early vegetative phase and then die. N2 - Pflanzen wandeln Sonnenlicht durch die Photosynthese in chemische Energie um. In der Natur unterliegt die Verfügbarkeit von Licht jedoch starken Schwankungen, beispielsweise durch kurzzeitige Wolkenverdeckungen. Um mit diesen Veränderungen umzugehen, haben Pflanzen spezielle Mechanismen entwickelt. Das Verständnis, wie die Lichtnutzung unter diesen fluktuierenden Bedingungen optimiert werden kann, stellt eines der Hauptziele in der Landwirtschaft dar. Ziel dieser Arbeit ist es, zu diesem Verständnis beizutragen. Wir haben eine neue Mutante der Ackerschmalwand identifiziert, die reduzierte Levels des schnell induzierbaren nicht-photochemischen Quenchings (NPQ) aufwies. NPQ ist ein wichtiger Mechanismus, mit dem Pflanzen auf schnelle Wechsel zu stärkerem Licht reagieren können. Die Untersuchung ergab, dass das Fehlen des Gens VTC2 die Ursache für die Reduzierung des NPQ war, mit Auswirkungen auf den Vitamin-C-Spiegel und die Aktivität des Xanthophyllzyklus. Besonders interessant war, dass der Verlust des Gens hauptsächlich ältere Blätter beeinflusste. Das Gen PGR5 ist für das Überleben von Pflanzen in schwankenden Lichtverhältnissen notwendig. Obwohl viele wissenschaftliche Arbeiten diesem Gen gewidmet sind, sind seine genauen Funktionen nur im Ansatz bekannt. In unserer Studie haben wir Ackerschmalwand Pflanzen ohne dieses Gen mit Chemikalien mutagenisiert und sie dann in schwankenden Lichtverhältnissen wachsen lassen. Dabei konnten wir Suppressormutanten finden, die überlebt haben. Durch diese Herangehensweise haben wir 11 Kandidatengene identifiziert, die eine mögliche Verbindung zum PGR5-Mechanismus aufweisen könnten. Einige dieser Mutanten hemmen das Photosystem II, das für das Einfangen der Lichtenergie verantwortlich ist, während andere Teile den Primärmetabolismus für Zucker und Stickstoff verändern. Zusammenfassend bietet die Arbeit Einsichten in die Mechanismen, mit denen Pflanzen auf schwankende Lichtbedingungen reagieren, und identifiziert spezifische Gene, die in diesen Prozessen eine Rolle spielen. KW - photosynthesis KW - fluctuating light KW - PGR5 KW - suppressor mutant screen KW - low NPQ Y1 - 2023 ER -