TY - JOUR A1 - Balischewski, Christian A1 - Bhattacharyya, Biswajit A1 - Sperlich, Eric A1 - Günter, Christina A1 - Beqiraj, Alkit A1 - Klamroth, Tillmann A1 - Behrens, Karsten A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Holtzheimer, Lea A1 - Nitschke, Anne A1 - Taubert, Andreas T1 - Tetrahalidometallate(II) ionic liquids with more than one metal BT - the effect of bromide versus chloride JF - Chemistry - a European journal N2 - Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs. KW - electrochemistry KW - ionic liquids KW - metal-containing ionic liquids; KW - N-butylpyridinium bromide KW - tetrahalidometallates Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201068 SN - 1521-3765 VL - 28 IS - 64 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balischewski, Christian A1 - Behrens, Karsten A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - Mies, Stefan A1 - Sperlich, Eric A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Ionic liquids with more than one metal BT - optical and rlectrochemical properties versus d-block metal vombinations JF - Chemistry - a European journal N2 - Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V. KW - bandgap KW - electrochemistry KW - ionic liquids KW - metal-containing ionic KW - liquids KW - tetrahalido metallates Y1 - 2020 U6 - https://doi.org/10.1002/chem.202003097 SN - 0947-6539 SN - 1521-3765 VL - 26 IS - 72 SP - 17504 EP - 17513 PB - Wiley-VCH CY - Weinheim ER -