TY - JOUR A1 - Umbreen, Sumaira A1 - Linker, Torsten T1 - Simple Synthesis of Conformationally Fixed Glycosamine Analogues by Beckmann Rearrangement at the Carbohydrate Ring JF - Chemistry - a European journal N2 - Conformationally fixed carbohydrate analogues are promising small-molecule inhibitors for hydrolases like O-GlcNAcase (OGA); however, their synthesis usually requires many steps. Herein we describe cycloadditions of dichloroketene to various glycals and subsequent Beckmann rearrangements, which offer an easy and stereoselective entry to glycosamine derivatives in good yields. The reactions are applicable for hexoses, pentoses, and disaccharides, and transformations to the corresponding imidates proceed smoothly. First biological tests reveal that such imidates indeed inhibit human OGA. KW - carbohydrates KW - cycloaddition KW - enzyme inhibitors KW - rearrangement KW - selective syntheses Y1 - 2015 U6 - https://doi.org/10.1002/chem.201406546 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7340 EP - 7344 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Linker, Torsten T1 - Addition of Heteroatom Radicals to endo-Glycals T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon–carbon bonds. The formation of carbon–heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 873 KW - radicals KW - carbohydrates KW - heteroatoms KW - synthesis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459970 SN - 1866-8372 IS - 873 ER - TY - JOUR A1 - Linker, Torsten T1 - Addition of Heteroatom Radicals to endo-Glycals JF - Chemistry N2 - Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon–carbon bonds. The formation of carbon–heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives KW - radicals KW - carbohydrates KW - heteroatoms KW - synthesis Y1 - 2020 U6 - https://doi.org/10.3390/chemistry2010008 SN - 2624-8549 VL - 2 IS - 1 SP - 80 EP - 92 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bauch, Marcel A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates JF - Molecules : a journal of synthetic chemistry and natural product chemistry N2 - Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form. KW - singlet oxygen KW - photooxygenation KW - naphthalenes KW - carbohydrates KW - stereoselectivity KW - auxiliary control KW - [4+2] cycloaddition Y1 - 2021 U6 - https://doi.org/10.3390/molecules26040804 SN - 1420-3049 VL - 16 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - Bauch, Marcel A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1116 KW - singlet oxygen KW - photooxygenation KW - naphthalenes KW - carbohydrates KW - stereoselectivity KW - auxiliary control KW - [4+2] cycloaddition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-493361 SN - 1866-8372 IS - 1116 ER -