TY - JOUR A1 - Klose, Ann Kristin A1 - Wunderling, Nico A1 - Winkelmann, Ricarda A1 - Donges, Jonathan T1 - What do we mean, 'tipping cascade'? JF - Environmental research letters : ERL N2 - Based on suggested interactions of potential tipping elements in the Earth's climate and in ecological systems, tipping cascades as possible dynamics are increasingly discussed and studied. The activation of such tipping cascades would impose a considerable risk for human societies and biosphere integrity. However, there are ambiguities in the description of tipping cascades within the literature so far. Here we illustrate how different patterns of multiple tipping dynamics emerge from a very simple coupling of two previously studied idealized tipping elements. In particular, we distinguish between a two phase cascade, a domino cascade and a joint cascade. A mitigation of an unfolding two phase cascade may be possible and common early warning indicators are sensitive to upcoming critical transitions to a certain degree. In contrast, a domino cascade may hardly be stopped once initiated and critical slowing down-based indicators fail to indicate tipping of the following element. These different potentials for intervention and anticipation across the distinct patterns of multiple tipping dynamics should be seen as a call to be more precise in future analyses of cascading dynamics arising from tipping element interactions in the Earth system. KW - tipping cascade KW - domino effect KW - tipping interactions KW - cascading regime KW - shifts KW - early warning indicators Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac3955 SN - 1748-9326 VL - 16 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wunderling, Nico A1 - Willeit, Matteo A1 - Donges, Jonathan Friedemann A1 - Winkelmann, Ricarda T1 - Global warming due to loss of large ice masses and Arctic summer sea ice JF - Nature Communications N2 - Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 degrees C (interquartile range: 0.39-0.46 degrees C) at a CO2 concentration of 400 ppm. Most of this response (55%) is caused by albedo changes, but lapse rate together with water vapour (30%) and cloud feedbacks (15%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales. The disintegration of cryosphere elements such as the Arctic summer sea ice, mountain glaciers, Greenland and West Antarctica is associated with temperature and radiative feedbacks. In this work, the authors quantify these feedbacks and find an additional global warming of 0.43 degrees C. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-18934-3 SN - 2041-1723 VL - 11 IS - 1 PB - Nature Publishing Group CY - Berlin ER -