TY - JOUR A1 - Titov, Evgenii A1 - Sharma, Anjali A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Photoisomerization of an azobenzene-containing surfactant within a micelle JF - ChemPhotoChem N2 - Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants. KW - azobenzene KW - micelles KW - photoswitches KW - rate constants KW - surfactants KW - surface hopping Y1 - 2021 U6 - https://doi.org/10.1002/cptc.202100103 SN - 2367-0932 VL - 5 IS - 10 SP - 926 EP - 932 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kasyanenko, Nina A1 - Lysyakova, Liudmila A1 - Ramazanov, Ruslan A1 - Nesterenko, Alexey A1 - Yaroshevich, Igor A1 - Titov, Evgenii A1 - Alexeev, G. A1 - Lezov, Andrey A1 - Unksov, I. T1 - Conformational and Phase Transitions in DNA-Photosensitive Surfactant Solutions: Experiment and Modeling JF - Biopolymers N2 - DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV-Vis spectrophotometry. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown. (c) 2014 Wiley Periodicals, Inc. Biopolymers 103: 109-122, 2015. KW - DNA-surfactant complexes KW - light-induced DNA de-compaction KW - phase diagram KW - DNA volume and persistent length Y1 - 2015 U6 - https://doi.org/10.1002/bip.22575 SN - 0006-3525 SN - 1097-0282 VL - 103 IS - 2 SP - 109 EP - 122 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Titov, Evgenii A1 - Lysyakova, Liudmila A1 - Lomadze, Nino A1 - Kabashin, Andrei V. A1 - Saalfrank, Peter A1 - Santer, Svetlana T1 - Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis -> trans isomerization of azobenzene-containing molecules in the presence of gold nanopartides. Experimentally, by means of UV vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold,nanoparticles the thermal lifetime of the cis isomer of the azobenzenecontaining molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanopartides is a possible reason to promote the thermal cis trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b02473 SN - 1932-7447 VL - 119 IS - 30 SP - 17369 EP - 17377 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Titov, Evgenii A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4899281 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 16 PB - American Institute of Physics CY - Melville ER -