TY - JOUR A1 - Rousseau, Batiste A1 - Erard, Stéphane A1 - Beck, P. A1 - Quirico, Eric A1 - Schmitt, B. A1 - Brissaud, O. A1 - Montes-Hernandez, G. A1 - Capaccioni, F. A1 - Filacchione, Gianrico A1 - Bockelee-Morvan, Dominique A1 - Leyrat, C. A1 - Ciarniello, M. A1 - Raponi, Andrea A1 - Kappel, David A1 - Arnold, G. A1 - Moroz, L. V. A1 - Palomba, Ernesto A1 - Tosi, Federico T1 - Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-mu m sized cosmochemical analogues JF - Icarus : international journal of solar system studies N2 - Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 mu m, excluding the organics band centred at 3.2 mu m. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role. (c) 2017 Elsevier Inc. All rights reserved. KW - Comets KW - Comets nucleus KW - Comets composition KW - Spectroscopy KW - Experimental techniques Y1 - 2018 U6 - https://doi.org/10.1016/j.icarus.2017.10.015 SN - 0019-1035 SN - 1090-2643 VL - 306 SP - 306 EP - 318 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Filacchione, Gianrico A1 - Groussin, Olivier A1 - Herny, Clemence A1 - Kappel, David A1 - Mottola, Stefano A1 - Oklay, Nilda A1 - Pommerol, Antoine A1 - Wright, Ian A1 - Yoldi, Zurine A1 - Ciarniello, Mauro A1 - Moroz, Lyuba A1 - Raponi, Andrea T1 - Comet 67P/CG Nucleus Composition and Comparison to Other Comets JF - Space science reviews N2 - We review our current knowledge of comet 67P/Churyumov–Gerasimenko nucleus composition as inferred from measurements made by remote sensing and in-situ instruments aboard Rosetta orbiter and Philae lander. Spectrophotometric properties (albedos, color indexes and Hapke parameters) of 67P/CG derived by Rosetta are discussed in the context of other comets previously explored by space missions. Composed of an assemblage made of ices, organic materials and minerals, cometary nuclei exhibit very dark and red surfaces which can be described by means of spectrophotometric quantities and reproduced with laboratory measurements. The presence of surface water and carbon dioxide ices was found by Rosetta to occur at localized sites where the activity driven by solar input, gaseous condensation or exposure of pristine inner layers can maintain these species on the surface. Apart from these specific areas, 67P/CG’s surface appears remarkably uniform in composition with a predominance of organic materials and minerals. The organic compounds contain abundant hydroxyl group and a refractory macromolecular material bearing aliphatic and aromatic hydrocarbons. The mineral components are compatible with a mixture of silicates and fine-grained opaques, including Fe-sulfides, like troilite and pyrrhotite, and ammoniated salts. In the vicinity of the perihelion several active phenomena, including the erosion of surface layers, the localized activity in cliffs, fractures and pits, the collapse of overhangs and walls, the transfer and redeposition of dust, cause the evolution of the different regions of the nucleus by inducing color, composition and texture changes. KW - Comets KW - Composition KW - Ices KW - Organic matter KW - Minerals Y1 - 2019 U6 - https://doi.org/10.1007/s11214-019-0580-3 SN - 0038-6308 SN - 1572-9672 VL - 215 IS - 19 PB - Springer CY - Dordrecht ER -