TY - JOUR A1 - Mazzio, Katherine A. A1 - Kojda, Sandrino Danny A1 - Rubio-Govea, Rodrigo A1 - Niederhausen, Jens A1 - Ryll, Britta A1 - Raja-Thulasimani, Monika A1 - Habicht, Klaus A1 - Raoux, Simone T1 - P-type-to-n-type transition in hybrid AgxTe/PEDOT:PSS thermoelectric materials via stoichiometric control during solution-based synthesis JF - ACS applied energy materials N2 - This work demonstrates the production of high-performing p- type and n-type hybrid AgxTe/poly(3,4-ethylenedioxythiopene):polystyrene sulfonic acid (PE-DOT:PSS) thermoelectric materials from the same Te/PEDOT:PSS parent structure during aqueous-based synthesis. All samples were solution-processed and analyzed in thin- film architectures. We were able to demonstrate a power factor of 44 mu W m(-1) K-2 for our highest-performing n-type material. In addition, we were also able to realize a 68% improvement in the power factor of our p-type compositions relative to the parent structure through manipulation of the inorganic nanostructure composition. We demonstrate control over the thermoelectric properties by varying the stoichiometry of AgxTe nanoparticles in AgxTe/PEDOT:PSS hybrid materials via a topotactic chemical transformation process at room temperature. This process offers a simple, low-temperature, and cost-effective route toward the production of both efficient n-type and p-type hybrid thermoelectric materials. KW - thermoelectrics KW - hybrid material KW - PEDOT:PSS KW - tellurium KW - silver KW - telluride KW - hybrid synthesis Y1 - 2020 U6 - https://doi.org/10.1021/acsaem.0c01774 SN - 2574-0962 VL - 3 IS - 11 SP - 10734 EP - 10743 PB - ACS Publications CY - Washington, DC ER -