TY - JOUR A1 - Reindl, Nicole A1 - Bainbridge, M. A1 - Przybilla, Norbert A1 - Geier, Stephan Alfred A1 - Prvak, M. A1 - Krticka, Jiri A1 - Ostensen, R. H. A1 - Telting, J. A1 - Werner, K. T1 - Unravelling the baffling mystery of the ultrahot wind phenomenon in white dwarfs JF - Monthly notices of the Royal Astronomical Society N2 - The presence of ultrahigh excitation (UHE) absorption lines (e.g. OVIII) in the optical spectra of several of the hottest white dwarfs poses a decades-long mystery and is something that has never been observed in any other astrophysical object. The occurrence of such features requires a dense environment with temperatures near 10(6) K, by far exceeding the stellar effective temperature. Here we report the discovery of a new hot wind white dwarf, GALEXJ014636.8+323615. Astonishingly, we found for the first time rapid changes of the equivalent widths of the UHE features, which are correlated to the rotational period of the star (P=0.242035 d). We explain this with the presence of a wind-fed circumstellar magnetosphere in which magnetically confined wind shocks heat up the material to the high temperatures required for the creation of the UHE lines. The photometric and spectroscopic variability of GALEXJ014636.8+323615 can then be understood as consequence of the obliquity of the magnetic axis with respect to the rotation axis of the white dwarf. This is the first time a wind-fed circumstellar magnetosphere around an apparently isolated white dwarf has been discovered and finally offers a plausible explanation of the ultrahot wind phenomenon. KW - stars: AGB and post-AGB KW - stars: evolution KW - stars: magnetic field Y1 - 2018 U6 - https://doi.org/10.1093/mnrasl/sly191 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 1 SP - L93 EP - L98 PB - Oxford Univ. Press CY - Oxford ER -