TY - JOUR A1 - Aldoretta, E. J. A1 - St-Louis, N. A1 - Richardson, N. D. A1 - Moffat, Anthony F. J. A1 - Eversberg, T. A1 - Hill, G. M. A1 - Shenar, Tomer A1 - Artigau, E. A1 - Gauza, B. A1 - Knapen, J. H. A1 - Kubat, Jiří A1 - Kubatova, Brankica A1 - Maltais-Tariant, R. A1 - Munoz, M. A1 - Pablo, H. A1 - Ramiaramanantsoa, T. A1 - Richard-Laferriere, A. A1 - Sablowski, D. P. A1 - Simon-Diaz, S. A1 - St-Jean, L. A1 - Bolduan, F. A1 - Dias, F. M. A1 - Dubreuil, P. A1 - Fuchs, D. A1 - Garrel, T. A1 - Grutzeck, G. A1 - Hunger, T. A1 - Kuesters, D. A1 - Langenbrink, M. A1 - Leadbeater, R. A1 - Li, D. A1 - Lopez, A. A1 - Mauclaire, B. A1 - Moldenhawer, T. A1 - Potter, M. A1 - dos Santos, E. M. A1 - Schanne, L. A1 - Schmidt, J. A1 - Sieske, H. A1 - Strachan, J. A1 - Stinner, E. A1 - Stinner, P. A1 - Stober, B. A1 - Strandbaek, K. A1 - Syder, T. A1 - Verilhac, D. A1 - Waldschlaeger, U. A1 - Weiss, D. A1 - Wendt, A. T1 - An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134 JF - Monthly notices of the Royal Astronomical Society N2 - During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist. KW - instabilities KW - methods: data analysis KW - techniques: spectroscopic KW - stars: individual: WR 134 KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1188 SN - 0035-8711 SN - 1365-2966 VL - 460 SP - 3407 EP - 3417 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Vafin, Sergei A1 - Schlickeiser, R. A1 - Yoon, P. H. T1 - AMPLIFICATION OF COLLECTIVE MAGNETIC FLUCTUATIONS IN MAGNETIZED BI-MAXWELLIAN PLASMAS FOR PARALLEL WAVE VECTORS. I. ELECTRON-PROTON PLASMA JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The general electromagnetic fluctuation theory is a powerful tool to analyze the magnetic fluctuation spectrum of a plasma. Recent works utilizing this theory for a magnetized non-relativistic isotropic Maxwellian electron-proton plasma have demonstrated that the equilibrium ratio of vertical bar delta B vertical bar/B-0 can be as high as 10(-12). This value results from the balance between spontaneous emission of fluctuations and their damping, and it is considerably smaller than the observed value vertical bar delta B vertical bar/B-0 in the solar wind at 1 au, where 10(-3) less than or similar to vertical bar delta B vertical bar/B-0 less than or similar to 10(-1). In the present manuscript, we consider an anisotropic bi-Maxwellian distribution function to investigate the effect of plasma instabilities on the magnetic field fluctuations. We demonstrate that these instabilities strongly amplify the magnetic field fluctuations and provide a sufficient mechanism to explain the observed value of vertical bar delta B vertical bar/B-0 in the solar wind at 1 au. KW - instabilities KW - magnetic fields KW - solar wind KW - turbulence KW - waves Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/829/1/41 SN - 0004-637X SN - 1538-4357 VL - 829 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hassanin, Alshaimaa A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helical kink instability in the confined solar eruption on 2002 May 27 JF - Astronomische Nachrichten = Astronomical notes KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612446 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1082 EP - 1089 PB - Wiley-VCH CY - Weinheim ER -