TY - JOUR A1 - Yin, Zhong A1 - Inhester, Ludger A1 - Veedu, Sreevidya Thekku A1 - Quevedo, Wilson A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Groenhof, Gerrit A1 - Föhlisch, Alexander A1 - Grubmueller, Helmut A1 - Techert, Simone T1 - Cationic and Anionic Impact on the Electronic Structure of Liquid Water JF - The journal of physical chemistry letters N2 - Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs significantly from that of bulk water. Ion-specific effects are identified by fingerprint features in the water X-ray emission spectra. While Mg2+ ions cause a bathochromic shift of the water lone pair orbital, the 3p orbital of the Cl- ions causes an additional peak in the water emission spectrum at around 528 eV. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01392 SN - 1948-7185 VL - 8 SP - 3759 EP - 3764 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yin, Zhong A1 - Rajkovic, Ivan A1 - Veedu, Sreevidya Thekku A1 - Deinert, Sascha A1 - Raiser, Dirk A1 - Jain, Rohit A1 - Fukuzawa, Hironobu A1 - Wada, Shin-ichi A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Ueda, Kyoshi A1 - Föhlisch, Alexander A1 - Techert, Simone T1 - Ionic solutions probed by resonant inelastic X-ray scattering JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction. KW - X-ray Spectroscopy KW - XAS KW - XES KW - RIXS KW - Anions KW - Cations KW - Liquid Jet KW - Synchrotron Radiation Y1 - 2015 U6 - https://doi.org/10.1515/zpch-2015-0610 SN - 0942-9352 VL - 229 IS - 10-12 SP - 1855 EP - 1867 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Yin, Zhong A1 - Rajkovic, Ivan A1 - Kubicek, Katharina A1 - Quevedo, Wilson A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Föhlisch, Alexander A1 - Techert, Simone T1 - Probing the Hofmeister effect with ultrafast core-hole spectroscopy JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect if existent may be caused by more complex interactions. Y1 - 2014 U6 - https://doi.org/10.1021/jp504577a SN - 1520-6106 VL - 118 IS - 31 SP - 9398 EP - 9403 PB - American Chemical Society CY - Washington ER -