TY - GEN A1 - Odongo, Grace Akinyi A1 - Schlotz, Nina A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Huyskens-Keil, Susanne A1 - Ngwene, Benard A1 - Trierweiler, Bernhard A1 - Schreiner, Monika A1 - Lamy, Evelyn T1 - African nightshade (Solanum scabrum Mill.) BT - impact of cultivation and plant processing on its health promoting potential as determined in a human liver cell model T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1133 KW - aflatoxin B1 KW - African indigenous vegetables KW - anti-genotoxicity KW - anti-oxidant activity KW - cancer chemoprevention KW - Solanaceae Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459114 SN - 1866-8372 IS - 1133 ER - TY - GEN A1 - Klopsch, Rebecca A1 - Baldermann, Susanne A1 - Voss, Alexander A1 - Rohn, Sascha A1 - Schreiner, Monika A1 - Neugart, Susanne T1 - Bread enriched with legume microgreens and leaves BT - ontogenetic and baking-driven changes in the profile of secondary plant metabolites T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1064 KW - ontogeny KW - microgreen KW - pea KW - lupin KW - flavonoid KW - carotenoid KW - thermal processing of food Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468707 SN - 1866-8372 IS - 1064 ER - TY - GEN A1 - Errard, Audrey A1 - Ulrichs, Christian A1 - Kühne, Stefan A1 - Mewis, Inga A1 - Mishig, Narantuya A1 - Maul, Ronald A1 - Drungowski, Mario A1 - Parolin, Pia A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae T2 - Frontiers in plant science N2 - The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 454 KW - carotenoids KW - plant volatiles KW - Chrysopidae KW - Solanaceae KW - multiple-pest infestation KW - tritrophic system KW - Twister TM KW - biological pest control Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407913 ER - TY - GEN A1 - Witzel, Katja A1 - Neugart, Susanne A1 - Ruppel, Silke A1 - Schreiner, Monika A1 - Wiesner, Melanie A1 - Baldermann, Susanne T1 - Recent progress in the use of ‘omics technologies in brassicaceous vegetables T2 - Frontiers in plant science N2 - Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 429 KW - genomics KW - transcriptomics KW - metabolomics KW - proteomics KW - crop KW - microbiomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406479 ER -