TY - JOUR A1 - Sahle, Fitsum Feleke A1 - Gerecke, Christian A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications JF - International Journal of Pharmaceutics N2 - pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit (R) L 100, Eudragit (R) L 100-55, Eudragit (R) S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700 nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10 mM pH 7.5 buffer and released > 80% of the drug within 7 h. The acrylate nanoparticles dissolved in 40 mM pH 7.5 buffer and released 65-70% of the drug within 7 h. The nanoparticles remained intact in 10 and 40 mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40 mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. KW - Cellulose acetate phthalate KW - Dexamethasone KW - Eudragit (R) KW - HPMCP KW - pH-sensitive nanoparticle KW - Skin nanocarrier Y1 - 2016 U6 - https://doi.org/10.1016/j.ijpharm.2016.11.029 SN - 0378-5173 SN - 1873-3476 VL - 516 IS - 1-2 SP - 21 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Nan A1 - Said, Andre A1 - Wischke, Christian A1 - Kral, Vivian A1 - Brodwolf, Robert A1 - Volz, Pierre A1 - Boreham, Alexander A1 - Gerecke, Christian A1 - Li, Wenzhong A1 - Neffe, Axel T. A1 - Kleuser, Burkhard A1 - Alexiev, Ulrike A1 - Lendlein, Andreas A1 - Schäfer-Korting, Monika T1 - Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure. KW - Biocompatibility testing KW - Drug delivery systems KW - Nanoparticle KW - Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] KW - Polymers KW - Skin absorption Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2016.10.019 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 66 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes JF - Nanotoxicology N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1080/17435390.2017.1292371 SN - 1743-5390 SN - 1743-5404 VL - 11 SP - 267 EP - 277 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderón, Marcelo A1 - Hedtrich, Sarah A1 - Schäfer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 335 KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395325 ER - TY - JOUR A1 - Balzus, Benjamin A1 - Sahle, Fitsum Feleke A1 - Hönzke, Stefan A1 - Gerecke, Christian A1 - Schumacher, Fabian A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium JF - European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology N2 - Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3–0.7%) than ethyl cellulose nanoparticles (1.4–2.2%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness. KW - Dermal delivery KW - Dexamethasone KW - Ethyl cellulose KW - Eudragit (R) RS KW - Ocular delivery KW - Polymeric nanoparticle Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2017.02.001 SN - 0939-6411 SN - 1873-3441 VL - 115 SP - 122 EP - 130 PB - Elsevier CY - Amsterdam ER -