TY - JOUR A1 - Schirrmann, Michael A1 - Landwehr, Niels A1 - Giebel, Antje A1 - Garz, Andreas A1 - Dammer, Karl-Heinz T1 - Early detection of stripe rust in winter wheat using deep residual neural networks JF - Frontiers in plant science : FPLS N2 - Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 x 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection accuracy with 76% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks. KW - yellow rust KW - monitoring KW - deep learning KW - wheat crops KW - image recognition KW - camera sensor KW - ResNet KW - smart farming Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.469689 SN - 1664-462X VL - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Sandmann, Michael A1 - Garz, Andreas A1 - Menzel, Ralf T1 - Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms JF - Botany N2 - Cells of a cell-wall deficient line (cw15-type) of Chlamydomonas reinhardtii and of the corresponding wild type were grown during repetitive light-dark cycles. In a direct comparison, both lines showed approximately the same relative biomass increase during light phase but the cw-line produced significantly more, and smaller, daughter cells. Throughout the light period the average cellular starch content, the cellular chlorophyll content, the cellular rate of dark respiration, and the cellular rate of photosynthesis of the cw-line was lower. Despite this, several non-cell volume related parameters like the development of starch content per cell volume were clearly different over time between the strains. Additionally, the chlorophyll-based photosynthesis rates were 2-fold higher in the mutant than in the wild-type cells, and the ratio of chlorophyll a to chlorophyll b as well as the light-saturation index were also consistently higher in the mutant cells. Differences in the starch content were also confirmed by single cell analyses using a sensitive SHG-based microscopy approach. In summary, the cw15-type mutant deviates from its genetic background in the entire cell physiology. Both lines should be used in further studies in comparative systems biology with focus on the detailed relation between cell volume increase, photosynthesis, starch metabolism, and daughter cell productivity. KW - cell wall deficient mutant KW - diurnal rhythm KW - nonlinear microscopy KW - photosynthesis KW - single-cell analysis Y1 - 2016 U6 - https://doi.org/10.1139/cjb-2015-0144 SN - 1916-2790 SN - 1916-2804 VL - 94 SP - 53 EP - 64 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Mahlow, Sebastian A1 - Hejazi, Mahdi A1 - Kuhnert, Franziska A1 - Garz, Andreas A1 - Brust, Henrike A1 - Baumann, Otto A1 - Fettke, Jörg T1 - Phosphorylation of transitory starch by -glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules JF - New phytologist : international journal of plant science N2 - Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, -amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes. KW - Arabidopsis thaliana KW - glucan KW - water dikinase (GWD) KW - sex1-8 KW - starch granule surface KW - starch phosphorylation Y1 - 2014 U6 - https://doi.org/10.1111/nph.12801 SN - 0028-646X SN - 1469-8137 VL - 203 IS - 2 SP - 495 EP - 507 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schwarze, Thomas A1 - Garz, Andreas A1 - Teuchner, Klaus A1 - Menzel, Ralf A1 - Holdt, Hans-Jürgen T1 - Two-photon probes for metal ions based on phenylaza[18]crown-6 ethers and 1,2,3-triazoles as pi-linkers JF - ChemPhysChem : a European journal of chemical physics and physical chemistry KW - absorption KW - cations KW - click chemistry KW - dyes/pigments KW - fluorescence Y1 - 2014 U6 - https://doi.org/10.1002/cphc.201402232 SN - 1439-4235 SN - 1439-7641 VL - 15 IS - 12 SP - 2436 EP - 2439 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Garz, Andreas T1 - Nichtlineare Mikroskopie und Bilddatenverarbeitung zur biochemischen Analyse synchronisierter Chlamydomonas-Zellen T1 - Non-linear microscopy and image data processing for biochemical analysis of synchronized Chlamydomonas cells N2 - Unter geeigneten Wachstumsbedingungen weisen Algenkulturen oft eine größere Produktivität der Zellen auf, als sie bei höheren Pflanzen zu beobachten ist. Chlamydomonas reinhardtii-Zellen sind vergleichsweise klein. So beträgt das Zellvolumen während des vegetativen Zellzyklus etwa 50–3500 µm³. Im Vergleich zu höheren Pflanzen ist in einer Algensuspension die Konzentration der Biomasse allerdings gering. So enthält beispielsweise 1 ml einer üblichen Konzentration zwischen 10E6 und 10E7 Algenzellen. Quantifizierungen von Metaboliten oder Makromolekülen, die zur Modellierung von zellulären Prozessen genutzt werden, werden meist im Zellensemble vorgenommen. Tatsächlich unterliegt jedoch jede Algenzelle einer individuellen Entwicklung, die die Identifizierung charakteristischer allgemeingültiger Systemparameter erschwert. Ziel dieser Arbeit war es, biochemisch relevante Messgrößen in-vivo und in-vitro mit Hilfe optischer Verfahren zu identifizieren und zu quantifizieren. Im ersten Teil der Arbeit wurde ein Puls-Amplituden-Modulation(PAM)-Fluorimetriemessplatz zur Messung der durch äußere Einflüsse bedingten veränderlichen Chlorophyllfluoreszenz an einzelnen Zellen vorgestellt. Die Verwendung eines kommerziellen Mikroskops, die Implementierung empfindlicher Nachweiselektronik und einer geeignete Immobilisierungsmethode ermöglichten es, ein Signal-zu-Rauschverhältnis zu erreichen, mit dem Fluoreszenzsignale einzelner lebender Chlamydomonas-Zellen gemessen werden konnten. Insbesondere wurden das Zellvolumen und der als Maß für die Effizienz des Photosyntheseapparats bzw. die Zellfitness geltende Chlorophyllfluoreszenzparameter Fv/Fm ermittelt und ein hohes Maß an Heterogenität dieser zellulären Parameter in verschiedenen Entwicklungsstadien der synchronisierten Chlamydomonas-Zellen festgestellt. Im zweiten Teil der Arbeit wurden die bildgebende Laser-Scanning-Mikroskopie und anschließende Bilddatenanalyse zur quantitativen Erfassung der wachstumsabhängigen zellulären Parameter angewandt. Ein kommerzielles konfokales Mikroskop wurde um die Möglichkeit der nichtlinearen Mikroskopie erweitert. Diese hat den Vorteil einer lokalisierten Anregung, damit verbunden einer höheren Ortsauflösung und insgesamt geringeren Probenbelastung. Weiterhin besteht neben der Signalgewinnung durch Fluoreszenzanregung die Möglichkeit der Erzeugung der Zweiten Harmonischen (SHG) an biophotonischen Strukturen, wie der zellulären Stärke. Anhand der Verteilungsfunktionen war es möglich mit Hilfe von modelltheoretischen Ansätzen zelluläre Parameter zu ermitteln, die messtechnisch nicht unmittelbar zugänglich sind. Die morphologischen Informationen der Bilddaten ermöglichten die Bestimmung der Zellvolumina und die Volumina subzellularer Strukturen, wie Nuclei, extranucleäre DNA oder Stärkegranula. Weiterhin konnte die Anzahl subzellulärer Strukturen innerhalb einer Zelle bzw. eines Zellverbunds ermittelt werden. Die Analyse der in den Bilddaten enthaltenen Signalintensitäten war Grundlage einer relativen Konzentrationsbestimmung von zellulären Komponenten, wie DNA bzw. Stärke. Mit dem hier vorgestellten Verfahren der nichtlinearen Mikroskopie und nachfolgender Bilddatenanalyse konnte erstmalig die Verteilung des zellulären Stärkegehalts in einer Chlamydomonas-Population während des Wachstums bzw. nach induziertem Stärkeabbau verfolgt werden. Im weiteren Verlauf wurde diese Methode auch auf Gefrierschnitte höherer Pflanzen, wie Arabidopsis thaliana, angewendet. Im Ergebnis wurde gezeigt, dass viele zelluläre Parameter, wie das Volumen, der zelluläre DNA- und Stärkegehalt bzw. die Anzahl der Stärkegranula durch eine Lognormalverteilung, mit wachstumsabhängiger Parametrisierung, beschrieben werden. Zelluläre Parameter, wie Stoffkonzentration und zelluläres Volumen, zeigen keine signifikanten Korrelationen zueinander, woraus geschlussfolgert werden muss, dass es ein hohes Maß an Heterogenität der zellulären Parameter innerhalb der synchronisierten Chlamydomonas-Populationen gibt. Diese Aussage gilt sowohl für die als homogenste Form geltenden Synchronkulturen von Chlamydomonas reinhardtii als auch für die gemessenen zellulären Parameter im intakten Zellverbund höherer Pflanzen. Dieses Ergebnis ist insbesondere für modelltheoretische Betrachtungen von Relevanz, die sich auf empirische Daten bzw. zelluläre Parameter stützen welche im Zellensemble gemessen wurden und somit nicht notwendigerweise den zellulären Status einer einzelnen Zelle repräsentieren. N2 - Under appropriate growth conditions cells of algae cultures often show a greater productivity than it is observed for cells in higher plants. The cells of Chlamydomonas reinhardtii are relatively small. The cell volume during the vegetative cell cycle ranges only between 50-3500 µm³. Compared to higher plants the concentration of biomass in an algal suspension is small. Thus, 1 ml of a suspension with a standard concentration contains between 10E6 and 10E7 algal cells. Quantification of metabolites or macromolecules, which are used for modeling of cellular processes, is usually carried out in the cell ensemble. However, every single algal cell undergoes an individual development, which makes the identification of characteristic universal system parameters far more complicated. The aim of this work was to identify and quantify relevant biochemical parameters, which were measured in vivo and in vitro using optical methods. In the first part, a Pulse Amplitude Modulation (PAM) measuring station was introduced to measure the variable chlorophyll fluorescence of individual cells. A commercial microscope was combined with sensitive detection electronics and the application of suitable immobilization methods. This allowed the achievement of a signal-to-noise ratio which made it possible to measure the fluorescence signals of individual living Chlamydomonas cells. In particular, cell volume and the chlorophyll fluorescence parameter Fv/Fm as a measure of the photosynthetic apparatus efficiency and cell fitness were determined. A high degree of cellular heterogeneity of these parameters in different development stages of synchronized Chlamydomonas cells was determined. In the second part, the imaging laser scanning microscopy and subsequent image analysis for quantitative detection of the growth-dependent cellular parameters were applied. A commercial confocal microscope was extended by the possibility of non-linear microscopy. Hereby, a more localized excitation of the samples was possible. Hence, a higher spatial resolution and lower overall sample stressing were achieved. Besides signal generation through fluorescence excitation, second harmonic generation (SHG) on biophotonic structures, such as cellular starch, was applied. Based on distribution functions cellular parameters were determined by using theoretical model approaches. This allowed the characterization of parameters that were not directly accessible by measurement. The morphological information of the image data enabled the determination of cell volume and volumes of sub-cellular structures such as nuclei, extra-nuclear DNA, and starch granules. Furthermore, the number of sub-cellular structures within a cell or a cell compound was determined. Analysis of signal intensities constituted the basis of relative quantification of cellular components such as DNA and starch. For the first time, the method of non-linear microscopy and subsequent image analysis enabled the characterization of the cellular starch distribution of a Chlamydomonas population during cell growth, and after induced starch degradation, respectively. Subsequently, this method was additionally applied to frozen sections of higher plants like Arabidopsis thaliana. As a result it was shown that many cellular parameters like volume, cellular DNA content, and number of starch granules are described by means of a log-normal distribution with growth-related parameterization. Cellular parameters, such as concentration and cellular volume, showed no significant correlations among each other. Therefore, it was concluded that there is a high degree of cellular parameter heterogeneity within synchronized Chlamydomonas populations. This applies not only to synchronized cultures of Chlamydomonas reinhardtii, which are currently considered as the most homogeneous form, but also to measured cellular parameters of intact cell assemblies in higher plants. The result is especially important for model-theoretic considerations, which are based on empirical data, and cellular parameters obtained from cell ensembles, respectively. KW - Nichtlineare Mikroskopie KW - Bilddatenanalyse KW - Einzelzellanalyse KW - Stärkemetabolismus KW - Zellimmobilisierung KW - non-linear microscopy KW - image data analysis KW - single cell analysis KW - starch metabolism KW - cell immobilization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66904 ER - TY - JOUR A1 - Garz, Andreas A1 - Sandmann, Michael A1 - Rading, Michael A1 - Ramm, Sascha A1 - Menzel, Ralf A1 - Steup, Martin T1 - Cell-to-cell diversity in a synchronized chlamydomonas culture as revealed by single-cell analyses JF - Biophysical journal N2 - In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cellular starch content. During photosynthesis-driven starch biosynthesis, synchronized Chlamydomonas cells possess an unexpected cell-to-cell diversity both in size and starch content, but the starch-related heterogeneity largely exceeds that of size. The cellular volume, starch content, and amount of starch/cell volume obey lognormal distributions. Starch degradation was initiated by inhibiting the photosynthetic electron transport in illuminated cells or by darkening. Under both conditions, the averaged rate of starch degradation is almost constant, but it is higher in illuminated than in darkened cells. At the single-cell level, rates of starch degradation largely differ but are unrelated to the initial cellular starch content. A rate equation describing the cellular starch degradation Y1 - 2012 U6 - https://doi.org/10.1016/j.bpj.2012.07.026 SN - 0006-3495 VL - 103 IS - 5 SP - 1078 EP - 1086 PB - Cell Press CY - Cambridge ER -