TY - THES A1 - Rodriguez Piceda, Constanza T1 - Thermomechanical state of the southern Central Andes T1 - Thermomechanischer Zustand der südlichen Zentral Anden BT - implications for active deformation patterns in the transition from flat to steep subduction BT - Implikationen für aktive Deformationsmuster beim Übergang von flacher zu steiler Subduktion N2 - The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA. N2 - Die Anden sind eine ~7000 km lange N-S-verlaufende Hochgebirgskette, die entlang des westlichen südamerikanischen Kontinentalrandes entstanden ist. Aufgrund der Subduktion der ozeanischen Nazca-Platte unter die kontinentale südamerikanische Platte ist die Bildung des nördlichen und zentralen Teils des Gebirges typisch für eine nicht-kollisionale Orogenese. In den südlichen Zentralanden (SZA, 29-39° S) verändert sich der Subduktionswinkel der ozeanischen Platte zwischen 33 ° S und 35 ° S von fast horizontal (< 5° Einfallen) im Norden zu einem steileren Winkel (~ 30 ° Einfallen) im Süden. Begleitet wird dieser Trend von systematischen, Süd-gerichteten Abnahmen der topographischen Erhebung, der Krusteneinengung und der Vorland- und Orogenbreite, sowie von Variationen im Deformationsstil des Vorlandes, wo die Einengung des Deckgebirges in unterschiedlichem Maße von einer entsprechenden Deformation des Grundgebirges begleitet wird. . Darüber hinaus sind die SZA eine seismisch sehr aktive Region. Die Kontinentalplatte zeichnet sich durch eine relativ flache Seismizität (< 30 km Tiefe) aus, die sich hauptsächlich auf die Übergänge vom Orogen zu den Vorlandbereichen konzentriert; im Gegensatz dazu tritt tiefere Seismizität in den zentralen Bereichen des nördlichen Vorlandes auf. Darüber hinaus ist häufig auftretende Seismizität auch in den flachen Teilen der ozeanischen Platte und im Plattensegment mit flach einfallender Subduktion zwischen 31 ° S und 33 ° S festzustellen. Die beobachtete räumliche Heterogenität der tektonischen und seismischen Deformation in den SZA wurde auf mehrere Ursachen zurückgeführt, darunter Schwankungen der Sedimentmächtigkeit, das Vorhandensein vererbter Strukturen und Veränderungen des Subduktionswinkels der ozeanischen Platte. Es gibt jedoch bislang keine Studie, die den Zusammenhang zwischen der langfristigen rheologischen Konfiguration der SZA und den räumlichen Deformationsmustern untersucht hat. Darüber hinaus wurden die Auswirkungen der Dichte- und Mächtigkeitsvariationen in der kontinentalen Oberplatte und der verschiedenen Subduktionswinkel auf den rheologischen Zustand der Lithosphäre noch nicht grundlegend untersucht. Da die Rheologie von der Gesteinsart, dem Druck und der Temperatur abhängt, ist eine detaillierte Charakterisierung der Zusammensetzung, Struktur und des thermischen Feldes der Lithosphäre erforderlich. Daher habe ich unter Verwendung kombinierter Modellierungsansätze und geophysikalischer Daten die folgenden 3D Modelle für die Lithosphäre der SZA konstruiert: (i) ein auf seismischen Daten basierendes Struktur- und Dichtemodell, das anhand des beobachteten Schwerefeldes validiert wurde; (ii) ein thermisches Modell, das die Umwandlung von Mantelscherwellengeschwindigkeiten in Temperaturen mit Berechnungen des konduktiven Wärmetransports für stationäre Bedingungen in der obersten Lithosphäre (<50 km Tiefe) integriert und durch Temperatur- und Wärmeflussmessungen validiert wurde; und (iii) ein rheologisches Modell der langfristig bedingten Lithosphärenfestigkeit, das auf den zuvor erzeugten Modellen gründet. Die Ergebnisse dieser Dissertation zeigen, dass die thermischen und rheologischen Bedingungen in den heutigen SZA durch verschiedene Mechanismen in unterschiedlichen Tiefen gesteuert werden. In flachen Tiefen (< 50 km) wird das thermomechanische Feld durch die heterogene Zusammensetzung der kontinentalen Lithosphäre differenziert. Eine Überprägung durch die ozeanische Platte ist dort nachweisbar, wo die ozeanische Platte flach (< 85 km tief) und die radiogene Kruste dünn ist, was insgesamt zu niedrigeren Temperaturen und einer höheren Festigkeit im Vergleich zu Bereichen führt, in denen die Platte steil einfällt und die radiogene Kruste dick ist. In Tiefen > 50 km treten die größten Temperaturschwankungen dort auf, wo die subduzierten Platte nachgewiesen wurde, was bedeutet, dass das tiefe thermische Feld den Subduktionswinkel gesteuert wird. Die Ergebnisse dieser Doktorarbeit legen nahe, dass der langfristige thermomechanische Zustand der Lithosphäre die räumliche Verteilung rezenter Seismizität beeinflusst. Der größte Anteil innerhalb der Kontinentalplatte registrierter Erdbebentätigkeit tritt oberhalb des modellierten Übergangs von spröden zu duktilen Bedingungen auf. Außerdem besteht eine räumliche Korrelation zwischen Erdbebenclustern und den Übergängen von den mechanisch rigideren Vorlandbereichen (Forearc und Foreland) zum mechanisch schwächeren Orogen. Demgegenüber wird vermehrte Seismizität innerhalb der ozeanischen Platte auch dort nachgewiesen, wo entsprechend der Modellierung langfristig duktile Bedingungen erwartet werden. Ich habe daher den möglichen Einfluss zusätzlicher Mechanismen untersucht, die ein Auslösen dieser Erdbeben begünstigen könnten, darunter die Kompaktion von Sedimenten an der Subduktionsgrenzfläche und Dehydrationsreaktionen innerhalb der Platte. Dazu habe ich eine qualitative Analyse des Hydratationszustandes des Mantels unter Verwendung des Verhältnisses zwischen Kompressions- und Scherwellengeschwindigkeit (Vp/Vs-Verhältnis aus einemseismischen Tomographiemodell) durchgeführt. Die Ergebnisse dieser Analyse zeigen, dass der Großteil der Seismizität räumlich mit hydratisierten Bereichen in der subduzierten Platte und im darüber liegenden kontinentalen Mantel korreliert, mit Ausnahme eines Erdbebenclusters, das innerhalb des flachen Plattensegments auftritt. In diesem Bereich wechselt die subduzierte Platte von einem flachen in einen steilen Subduktionswinkel und Erdbeben werden wahrscheinlich durch Biegevorgänge in der Platte ausgelöst. Auch die wichtigsten Variationen in den beobachteten tektonischen Mustern scheinen durch die thermomechanische Konfiguration der Lithosphäre beeinflusst zu sein. Die mechanisch starken Bereiche von Forearc und Foreland zeigen aufgrund ihrer Verformungsbeständigkeit geringere Verkürzungsraten als der relativ schwache Bereich des Orogens. Darüber hinaus bestätigen die in dieser Dissertation modellierten strukturellen und thermomechanischen Eigenschaften der Lithosphäre auch frühere Analysen geodynamischer Simulationen, denen zufolge der Deformationsstil im Orogen- und Vorlandbereich jeweils von Variationen in der Lithosphären- und Krustendicke, im Vorhandensein schwacher Sedimente und in der gravitativen potentiellen Energie kontrolliert wird. Eine Sonderstellung nimmt der nordöstliche Vorlandbereich der SZA ein, wo eine verstärkte Seismizität und eine das Deck-und Grundgebirge erfassende Deformation zu beobachten sind, obwohl die modellierte Krustenfestigkeit dort Werte übersteigt, die für die in diesem Gebiet anzunehmenden tektonischen Spannungen typisch wären. . Mechanismen zur Lokalisierung verstärkter Deformation in einem Gebiet beitragen können, das nach den vorliegenden Modellen einer tektonischen Verformung widerstehen sollte, sind: (i) erhöhte tektonische Kräfte durch ein steileres Abtauchen der Platte und (ii) Schwächezonen in der Kruste, die auf prä-andine Deformationsereignisse zurückgehen. Schließlich könnten die thermomechanischen Bedingungen in diesem Teil des Vorlands einchlüsselfaktor für die Erhaltung des flachen Subduktionswinkels in diesen Breiten der SZA sein. KW - Andes KW - Anden KW - subduction KW - Subduktion KW - lithosphere KW - Lithosphäre KW - earthquakes KW - Erdbeben KW - modelling KW - Modellierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549275 ER - TY - THES A1 - Petersen, Gesa Maria T1 - Source studies of small earthquakes in the AlpArray: CMT inversion, seismo-tectonic analysis and methodological developments T1 - Herdmechanismen von kleinen Erdbeben im AlpArray: CMT-Inversion, seismotektonische Analyse und methodische Entwicklungen N2 - Centroid moment tensor inversion can provide insight into ongoing tectonic processes and active faults. In the Alpine mountains (central Europe), challenges result from low signal-to-noise ratios of earthquakes with small to moderate magnitudes and complex wave propagation effects through the heterogeneous crustal structure of the mountain belt. In this thesis, I make use of the temporary installation of the dense AlpArray seismic network (AASN) to establish a work flow to study seismic source processes and enhance the knowledge of the Alpine seismicity. The cumulative thesis comprises four publications on the topics of large seismic networks, seismic source processes in the Alps, their link to tectonics and stress field, and the inclusion of small magnitude earthquakes into studies of active faults. Dealing with hundreds of stations of the dense AASN requires the automated assessment of data and metadata quality. I developed the open source toolbox AutoStatsQ to perform an automated data quality control. Its first application to the AlpArray seismic network has revealed significant errors of amplitude gains and sensor orientations. A second application of the orientation test to the Turkish KOERI network, based on Rayleigh wave polarization, further illustrated the potential in comparison to a P wave polarization method. Taking advantage of the gain and orientation results of the AASN, I tested different inversion settings and input data types to approach the specific challenges of centroid moment tensor (CMT) inversions in the Alps. A comparative study was carried out to define the best fitting procedures. The application to 4 years of seismicity in the Alps (2016-2019) substantially enhanced the amount of moment tensor solutions in the region. We provide a list of moment tensors solutions down to magnitude Mw 3.1. Spatial patterns of typical focal mechanisms were analyzed in the seismotectonic context, by comparing them to long-term seismicity, historical earthquakes and observations of strain rates. Additionally, we use our MT solutions to investigate stress regimes and orientations along the Alpine chain. Finally, I addressed the challenge of including smaller magnitude events into the study of active faults and source processes. The open-source toolbox Clusty was developed for the clustering of earthquakes based on waveforms recorded across a network of seismic stations. The similarity of waveforms reflects both, the location and the similarity of source mechanisms. Therefore the clustering bears the opportunity to identify earthquakes of similar faulting styles, even when centroid moment tensor inversion is not possible due to low signal-to-noise ratios of surface waves or oversimplified velocity models. The toolbox is described through an application to the Zakynthos 2018 aftershock sequence and I subsequently discuss its potential application to weak earthquakes (Mw<3.1) in the Alps. N2 - Die Erforschung der Bruchmechanismen von Erdbeben in den Alpen bietet Einblicke in aktuelle tektonische Prozesse. Typischerweise niedrige bis mittlere Erdbebenmagnituden und die heterogene Krustenstruktur des alpinischen Gebirges erschweren die zu dieser Erforschung durchgeführten Momententensorinversionen. In dieser Dissertation stelle ich einen Arbeitsablauf vor, mit dem ich die Bruchprozesse von Erdbeben zwischen 2016 und 2019 studiert habe. Datengrundlage bildet dabei das temporäre AlpArray Netzwerk (AASN - AlpArray seismic network). Die kumulative Dissertation besteht aus vier Publikationen, die sich einerseits mit den Möglichkeiten und Herausforderungen von großen seismischen Netzwerken und andererseits mit der Erforschung der Bruchprozesse beschäftigen. Dabei wird sowohl auf die Verbindung von den Herdmechanismen und anderen Informationen wie Seismizität, Tektonik und Spannungsfeld eingegangen, als auch untersucht, wie kleinere Erdbeben unser Wissen erweitern können. Die Nutzung der großen Anzahl von Sensoren des AASN erfordert eine sorgfältige Kontrolle von Wellenformdaten und Stations-Metadaten. Um diese aufwändige Aufgabe weitmöglichst zu automatisieren, habe ich die open source toolbox AutoStatsQ entwickelt. Die Verwendung von AutoStatsQ zur Überprüfung des AASN zeigte mehrere signifikante Fehler in den Wellenform-Amplituden und in den Orientierungen der Horizontalkomponenten der Sensoren. Bei einer zweiten Anwendung des Orientierungstests von AutoStatsQ auf das türkische KOERI Netzwerk zeigten sich ebenfalls zahlreiche fehlerhaft orientierte Sensoren. Ein Vergleich mit einer zweiten Methode, basierend auf P-Wellen anstatt von Rayleigh-Wellen, zeigt weitestgehend übereinstimmende Ergebnisse. Basierend auf der Datenqualitätsstudie des AASN werden in der dritten Publikation systematisch verschiedene Einstellungen (z.B. Frequenzbänder, Datentypen, Azimuthale Abdeckung) für Momententensorinversionen getestet und vergleichen. Anschließend wurden Bruchprozesse von Erdbeben zwischen 2016 und 2019 mit Magnituden ab Mw 3.1 analysiert. Zur Interpretation der Ergebnisse im seismotektonischen Zusammenhang werden zusätzlich ältere Momententensorlösungen, Seismizitätskataloge ab 1970, historische Erdbeben und Deformation basierend auf Satellitendaten betrachtet. Aufgrund des Signal-Rausch-Verhältnisses von Oberflächenwellen müssten im Falle von Erdbeben mit kleineren Magnituden (Mw<3.1) höherfrequentere Raumwellen genutzt werden. Je höher der Frequenzbereich, desto größer sind die Einflüsse von Heterogenitäten entlang der Laufwege, sodass einfache 1-D Geschwindigkeitsmodelle nicht ausreichen. Um trotzdem kleinere Erdbeben in die Studien von aktiven Störungen einzubeziehen, haben wir die open-source toolbox Clusty entwickelt. Diese nutzt die Ähnlichkeit von Wellenformen in einem seismischen Netzwerk, um Erdbeben zu gruppieren. Die Ähnlichkeit von Wellenformen zweier Erdbeben über ein Netzwerk resultiert dabei sowohl aus der Ähnlichkeit der Herdmechanismen als auch aus der Lokation der Beben. Der Ketten-ähnliche clustering Ansatz ermöglicht es dabei, graduelle Wellenform-Unterschiede aufgrund von Lokationsänderungen entlang einer Störungszone zu berücksichtigen. Das clustering bietet folglich die Möglichkeit, Beben mit ähnlichen Herdmechanismen zu identifizieren und somit Störungszonen nachzuzeichnen. Die toolbox wird in der vierten Publikation anhand einer Anwendung auf die Nachbebensequenz des Zakynthos Bebens von 2018 beschrieben. Anschließend daran diskutiere ich, wie eine Anwendung auf die Alpen unsere Studien der Bruchprozesse und aktiven Störungen erweitern kann. KW - Moment tensor inversion KW - AlpArray KW - Alps KW - Earthquakes KW - Erdbeben KW - Momententensorinversion KW - Alpen KW - AlpArray Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525635 ER - TY - THES A1 - Marc, Odin T1 - Earthquake-induced landsliding T1 - Erdbeben induzierten Hangrutschungen BT - earthquakes as erosional agents across timescales BT - Erdbeben als Erosions-Agenten über Zeitskalen N2 - Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms. Apart from seismological complexities neglected by the model I found that exceptional rock strength properties or antecedent conditions may explain most outliers. Second, I assessed the geomorphic effects of large earthquakes on landscape dynamics by surveying the temporal evolution of precipitation-normalized landslide rate. I found strongly elevated landslide rates following earthquakes that progressively recover over 1 to 4 years, indicating that regolith strength drops and recovers. The relaxation is clearly non-linear for at least one case, and does not seem to correlate with coseismic landslide reactivation, water table level increase or tree root-system recovery. I suggested that shallow bedrock is damaged by the earthquake and then heals on annual timescales. Such variations in ground strength must be translated into shallow subsurface seismic velocities that are increasingly surveyed with ambient seismic noise correlations. With seismic noise autocorrelation I computed the seismic velocity in the epicentral areas of three earthquakes where I constrained a change in landslide rate. We found similar recovery dynamics and timescales, suggesting that seismic noise correlation techniques could be further developed to meaningfully assess ground strength variations for landscape dynamics. These two measurements are also in good agreement with the temporal dynamics of post-seismic surface displacement measured by GPS. This correlation suggests that the surface healing mechanism may be driven by tectonic deformation, and that the surface regolith and fractured bedrock may behave as a granular media that slowly compacts as it is sheared or vibrated. Last, I compared our model of earthquake-induced landsliding with a standard formulation of surface deformation caused by earthquakes to understand which parameters govern the competition between the building and destruction of topography caused by earthquakes. In contrast with previous studies I found that very large (Mw>8) earthquakes always increase the average topography, whereas only intermediate (Mw ~ 7) earthquakes in steep landscapes may reduce topography. Moreover, I illustrated how the net effect of earthquakes varies with depth or landscape steepness implying a complex and ambivalent role through the life of a mountain belt. Further I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes, will limit topography over a larger range of fault sizes than faults producing repeated earthquakes with a characteristic size. N2 - Erdbeben gestalten die Erdoberfläche, sie tragen langfristig zum Aufbau von Topografie sowie zur Landschafts- und Gebirgsbildung bei. Die von Erdbeben erzeugten seismischen Erschütterungen können Gebirge jedoch auch destabilisieren und grosse Mengen an Boden sowie Grundgestein zum Abrutschen bringen und zerrüten. Erdbeben wirken daher sowohl auf die Gebirgsbildung als auch auf ihre Denudation. Ein detailliertes Verständnis der Auswirkungen von Erdbeben auf Hangstabilität ist eine wichtige Voraussetzung um die Zusammenhänge mit anderen Prozesse besser nachzuvollziehen: der kurzfristige Transport von Sedimenten und organischem Material in Flüsse und ihre Ablagerung bis in die Ozeane; der Verlust von Leben und Infrastruktur durch Hangrutschungen verbunden mit episodischen, katastrophalen, seismischen Ereignissen; die Störung und Wiederherstellung von Landschaftseigenschaften nach Erdbeben; sowie die langfristigen topographischen Entwicklung von ganzen Gebirgsketten. Einige dieser Forschungsfragen wurden kürzlich in einzelnen Fallstudien betrachtet aber zusätzliche Datenerfassung, theoretische und numerische Modellierung sind erforderlich, um diese Prozesse detaillierter zu erfassen. In dieser Dissertation werden Daten zu Eigenschaften der Erdbeben sowie aus Hangrutsch kartierungen und die Interpretation seismologischer Daten mit physikalischer Modellierung kombiniert, um die folgende übergreifende Frage zu beantworten: Wie beeinflussen Erdbeben die Erosionsprozesse in der Landschaftsentwicklung? Auf einer kurzen Zeitskala (10-100 s) und einer mittleren räumlichen Skala (10 km), habe ich versucht sowohl unser Prozessverständnis zu vertiefen als auch Vorhersagen über das gesamte Volumen der Rutschungen welche durch seismische Beben in der unmittelbaren Umgebung von Epizentren ausgelöst wurden, zu treffen und zu verbessern Auf einer langen Zeitskala (1-100 ky) und über einen Gebirgsgürtel (100 km) habe ich die durch Erdbeben ausgelösten konkurrierenden Prozesse von Abflachung von Topografie durch Erosion und den Aufbau von Topografie durch Hebung, modelliert. Auf einer mittleren Zeitskala (1-10 Jahre) und einer relativ kleinen Hangskala (0,1-1 km) habe ich geomorphologische und seismologische Daten erhoben, welche die anhaltenden Auswirkungen von Erdbeben auf Landschaftseigenschaften und deren Dynamic hervorheben. Zuerst habe ich eine Datenbank von Erdbeben erstellt, welche erhebliche Hangrutschungen ausgelöst hatten, einschliesslich einer Schätzung des gesamten Hangrutschungsvolumens und der Erdbebencharakteristiken wie z.B. seismischer Moment und Lage des Hypozentrums. Ich habe auch beurteilt, wie die Kartierung von Erdrutschen die Abschätzungen des Gesamtvolumens fehlerhaft beeinflussen können und präsentiere einen Algorithmus, um solche Fehler automatisch zu erkennen. Diese Datenbank wurde verwendet, um eine physisch-basierte Vorhersage der durch Erdbeben verursachten gesamten Hangrutschungsflächen und Volumen zu testen, welche auf seismologischen Skalierungsbeziehungen und auf einer statistischen Beschreibung der Landschaftseigenschaften basiert. Zweitens untersuchte ich den Einfluss von starken Erdbeben auf die Landschaftsdynamik durch das Vermessen der temporalen Entwicklung der Suszeptibilität von Hangrutschungen. Ich habe gezeigt, dass die stark erhöhte Hangrutschrate nach dem Erdbeben schrittweise nach einigen Jahren zurückging. Diesen Rückgang über die Zeit interpretiere ich als die Zerrüttung von oberflächennahem Gestein durch das Erdbeben und die Heilung der dadurch entstandenen Risse über der Zeit. Meine Daten deuten darauf hin, dass die Zerrüttungen und die anschliessende Heilung des Festgesteins in dem epizentralen Gebieten mit ambienten, seismischen Hintergrundrauschen überwacht werden kann. Möglicherweise wird die Heilung zusätzlich durch andauernde post-seismische Deformation angetrieben. Am Ende der Arbeit vergleiche ich meine entwickelten Modelle von erdbebenbedingten Hangrutschungen mit einer Standardformel für erdbebenverursachte Oberflächendeformierung. Mit diesem Vergleich zeige ich welche Parameter den Wettstreit zwischen der Hebung von Topografie und der gleichzeitigen Zerstörung von Topografie durch Erdbeben bestimmen. Ich zeige, dass nur mittlere - Mw ~ 7 - Erdbeben die Topografie reduzieren können im Gegensatz zu stärkeren - Mw > 8 - Beben die immer einen effektive Bildung von Topografie verursachen. Meine Ergebnisse zeigen die komplexen Zusammenhänge von Erdbeben in der Gebirgsbildung. KW - earthquake KW - landslide KW - erosion KW - Erdbeben KW - Erdrutsch KW - Erosion KW - topography KW - Topographie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96808 ER - TY - THES A1 - Jara Muñoz, Julius T1 - Quantifying forearc deformation patterns using coastal geomorphic markers T1 - Quantifizierung von Deformationsmustern mit Hilfe von Kustengeomorphologischen Markern BT - A comprehensive study of marine terraces along the 2010 Maule earthquake (M8.8) rupture zone N2 - Rapidly uplifting coastlines are frequently associated with convergent tectonic boundaries, like subduction zones, which are repeatedly breached by giant megathrust earthquakes. The coastal relief along tectonically active realms is shaped by the effect of sea-level variations and heterogeneous patterns of permanent tectonic deformation, which are accumulated through several cycles of megathrust earthquakes. However, the correlation between earthquake deformation patterns and the sustained long-term segmentation of forearcs, particularly in Chile, remains poorly understood. Furthermore, the methods used to estimate permanent deformation from geomorphic markers, like marine terraces, have remained qualitative and are based on unrepeatable methods. This contrasts with the increasing resolution of digital elevation models, such as Light Detection and Ranging (LiDAR) and high-resolution bathymetric surveys. Throughout this thesis I study permanent deformation in a holistic manner: from the methods to assess deformation rates, to the processes involved in its accumulation. My research focuses particularly on two aspects: Developing methodologies to assess permanent deformation using marine terraces, and comparing permanent deformation with seismic cycle deformation patterns under different spatial scales along the M8.8 Maule earthquake (2010) rupture zone. Two methods are developed to determine deformation rates from wave-built and wave-cut terraces respectively. I selected an archetypal example of a wave-built terrace at Santa Maria Island studying its stratigraphy and recognizing sequences of reoccupation events tied with eleven radiocarbon sample ages (14C ages). I developed a method to link patterns of reoccupation with sea-level proxies by iterating relative sea level curves for a range of uplift rates. I find the best fit between relative sea-level and the stratigraphic patterns for an uplift rate of 1.5 +- 0.3 m/ka. A Graphical User Interface named TerraceM® was developed in Matlab®. This novel software tool determines shoreline angles in wave-cut terraces under different geomorphic scenarios. To validate the methods, I select test sites in areas of available high-resolution LiDAR topography along the Maule earthquake rupture zone and in California, USA. The software allows determining the 3D location of the shoreline angle, which is a proxy for the estimation of permanent deformation rates. The method is based on linear interpolations to define the paleo platform and cliff on swath profiles. The shoreline angle is then located by intersecting these interpolations. The accuracy and precision of TerraceM® was tested by comparing its results with previous assessments, and through an experiment with students in a computer lab setting at the University of Potsdam. I combined the methods developed to analyze wave-built and wave-cut terraces to assess regional patterns of permanent deformation along the (2010) Maule earthquake rupture. Wave-built terraces are tied using 12 Infra Red Stimulated luminescence ages (IRSL ages) and shoreline angles in wave-cut terraces are estimated from 170 aligned swath profiles. The comparison of coseismic slip, interseismic coupling, and permanent deformation, leads to three areas of high permanent uplift, terrace warping, and sharp fault offsets. These three areas correlate with regions of high slip and low coupling, as well as with the spatial limit of at least eight historical megathrust ruptures (M8-9.5). I propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust, which result in discrete boundaries for the propagation of mega earthquakes. To explore the application of geomorphic markers and quantitative morphology in offshore areas I performed a local study of patterns of permanent deformation inferred from hitherto unrecognized drowned shorelines at the Arauco Bay, at the southern part of the (2010) Maule earthquake rupture zone. A multidisciplinary approach, including morphometry, sedimentology, paleontology, 3D morphoscopy, and a landscape Evolution Model is used to recognize, map, and assess local rates and patterns of permanent deformation in submarine environments. Permanent deformation patterns are then reproduced using elastic models to assess deformation rates of an active submarine splay fault defined as Santa Maria Fault System. The best fit suggests a reverse structure with a slip rate of 3.7 m/ka for the last 30 ka. The register of land level changes during the earthquake cycle at Santa Maria Island suggest that most of the deformation may be accrued through splay fault reactivation during mega earthquakes, like the (2010) Maule event. Considering a recurrence time of 150 to 200 years, as determined from historical and geological observations, slip between 0.3 and 0.7 m per event would be required to account for the 3.7 m/ka millennial slip rate. However, if the SMFS slips only every ~1000 years, representing a few megathrust earthquakes, then a slip of ~3.5 m per event would be required to account for the long- term rate. Such event would be equivalent to a magnitude ~6.7 earthquake capable to generate a local tsunami. The results of this thesis provide novel and fundamental information regarding the amount of permanent deformation accrued in the crust, and the mechanisms responsible for this accumulation at millennial time-scales along the M8.8 Maule earthquake (2010) rupture zone. Furthermore, the results of this thesis highlight the application of quantitative geomorphology and the use of repeatable methods to determine permanent deformation, improve the accuracy of marine terrace assessments, and estimates of vertical deformation rates in tectonically active coastal areas. This is vital information for adequate coastal-hazard assessments and to anticipate realistic earthquake and tsunami scenarios. N2 - Küstenregionen, die von schnellen Hebungsraten gekennzeichnet sind, werden häufig mit konvergierenden Plattengrenzen assoziiert, beispielsweise mit Subduktionszonen, die wiederholt von Mega-Erdbeben betroffen sind. Das Küstenrelief tektonisch aktiver Gebiete formt sich durch die Effekte von Meeresspiegelschwankungen und die heterogenen Muster der permanenten tektonischen Deformation, die im Zuge von mehreren Erdbebenzyklen entstand. Jedoch die Korrelation zwischen den Deformationsmustern von Erdbeben und der langfristig anhaltenden Segmentation der ‚Forearcs’ ist noch wenig erforscht, insbesondere in Chile. Darüber hinaus sind die Methoden zur Schätzung der permanenten Deformation geomorphologischer Marker, wie beispielsweise mariner Terrassen, lediglich qualitativ oder basieren nicht auf wiederholbaren Messungen. Dies steht im Kontrast zu der mittlerweile höheren Auflösung verfügbarer digitaler Geländemodelle, die z.B. mit LiDAR (Light Detection and Ranging) oder durch hochauflösende bathymetrische Studien gewonnen werden. Im Rahmen dieser Dissertation wird die permanente Deformation einer ganzheitlichen Betrachtung unterzogen, die von den zu Grunde liegenden Methoden zur Bestimmung der Deformationsraten bis hin zu den involvierten Prozessen bei deren Akkumulation reicht. Besonderes Augenmerk wird dabei auf zwei Aspekte gerichtet: Einerseits die Entwicklung von Methoden zur Messung permanenter Deformation anhand von marinen Terrassen, und andererseits der Vergleich zwischen permanenter Deformation und Deformationsmustern des seismischen Zyklus anhand unterschiedlicher räumlicher Ausmaße entlang der Bruchzone des M8.8 Maule (2010) Erdbebens entstanden. Es werden zwei Methoden zur Bestimmung der Deformationsraten von ’wave-built’ und ‘wave-cut’ Terrassen entwickelt. Ein archetypischer Beispiel einer ‘wave-built’ Terrasse wird auf der Insel Santa Maria untersucht. Durch die detaillierte Studie der Sedimentabfolge, werden wiederkehrende Ereignisse der Reaktivierung der Terrasse identifiziert, die anhand von Messungen an Kohlenstoffisotopen (C14- Datierung) von 11 Proben zeitlich eingegrenzt werden. Es wird eine Methode entwickelt, um solche Reaktivierungsmuster mit Meeresspiegelindikatoren in Verbindung zu bringen, wobei die relativen Meeresspiegelkurven mit einer Reihe von Hebungsraten korreliert werden. Die beste Korrelation zwischen Meeresspiegelschwankungen und dem stratigrafischen Muster wird unter Berücksichtigung einer Hebungsrate von 1.5 ± 0.3 m/ka erreicht. Unter Verwendung der Software Matlab® wird die grafische Benutzeroberfläche TerraceM® entwickelt. Diese neue Methode erlaubt die Bestimmung von Küstenwinkels in ‘wave-cut’ Terrassen in verschiedenen geomorphischen Szenarien. Zur Validierung der Methoden werden Regionen entlang der Bruchzone des Maule-Erdbebens und in Kalifornien ausgewählt, für die hochauflösende LiDAR-Daten der Topografie zur Verfügung stehen. Die Software ermöglicht es, den 3D Standort des Küstenwinkels zu bestimmen, der als Proxy für die Schätzung permanenter Deformationsraten fungiert. Dabei nutzt die Methode lineare Interpolation um die Paleo Plattform und die Klippen mit Swath Profilen zu definieren. Im Anschluss wird der Küstenwinkel durch die Überschneidung dieser Interpolationen lokalisiert. Die Genauigkeit und Robustheit von „TerraceM“ wird durch den Vergleich der Ergebnisse mit denen vorangegangener Untersuchungen überprüft. Um regionale Muster permanenter Deformationen entlang der (2010) Maule Bruchzone zu untersuchen werden die Methoden für die ‚wave-built’ und ‚wave-cut’ Terrassen kombiniert. ‘Wave-built’ Terrassen werden mittels 12 Infrarot-Optisch-Stimulierten Lumineszenz (IRSL) Proben datiert, während die Küstenwinkel der ‘wave-cut’ Terrassen anhand von 170 abgestimmten SWATH-Profilen geschätzt wurden. Durch den Vergleich von co-seismischem Versatz, interseismischer Kopplung und permanenter Deformation ergaben sich drei Gebiete mit hoher permanenter Erhebung, Terrassenkrümmung und abruptem, störungsbedingtem Versatz. Diese drei Gebiete korrelieren mit Regionen von hohem Versatz und niedriger Kopplung, sowie mit der räumlichen Begrenzung der Bruchzonen von mindestens acht historischen Mega-Erdbeben. Es wird argumentiert, dass die ansteigenden Zonen bei Arauco und Topocalma Änderungen der Reibungseigenschaften von Mega-Erdbeben widerspiegeln, was diskrete Grenzen für die Ausbreitung von Mega-Erdbeben zur Folge hat. Ein weiterer Beitrag dieser Dissertation ist die lokale Untersuchung permanenter Deformationsmuster von bislang unbekannten überflutete Küstenlinien in der Arauco-Bucht bei der Santa Maria Insel, die ebenfalls vom Maule Erdbeben betroffen wurde. Ein multidisziplinärer Ansatz wird verwendet, um lokale Muster permanenter Deformation in submarinen Umgebungen zu erkennen, abzubilden und zu untersuchen. Dabei kommen Morphometrie, Sedimentologie, Paläontologie, 3D Morphoskopie und ein Landschafts-Entwicklungs-Model zum Einsatz. Permanente Deformationsmuster werden anhand eines elastischen Models nachgebildet und bestimmen die Deformationsraten einer aktiven, submarinen Aussenstörung (‘splay fault’), die als Santa Maria Störungszone definiert wird und durch eine Versatzrate von 3.7 m/ka für die letzten 30 ka charakterisiert ist. Die Aufzeichnungen zu Veränderungen der Elevation der Erdoberfläche während des Santa Maria Erdbebenzyklus deuten darauf hin, dass der wesentliche Teil der Deformation auf die Reaktivierung einer ‘Splay Fault’ während Mega-Erdbeben (wie z.B. das Maule (2010) Erdbeben) zurückzuführen ist. Allerdings die Sismizität in geringer Tiefe, die während der letzten zehn Jahre vor dem Maule-Erdbeben registriert wurde, deutet auf vorübergehende Störungsaktivität in der interseismischen Phase hin. Die Ergebnisse dieser Dissertation liefern neuartige und fundamentale Daten bezüglich der Menge und Mechanismen der Akkumulierung permanenter Deformation in der Erdkruste über mehrere tausend Jahre hinweg in der Region des M8.8 Maule Erdbebens (2010). Die in dieser Dissertation präsentierten neuen Methoden zur Charakterisierung permanenter Deformation mithilfe von geomorpologischen Küstenmarkern bieten einen breiteren quantitativen Ansatz zur Interpretation aktiver Deformation dar und können somit zu einem besseren Verständnis der Geologie in tektonisch aktiven Küstengebieten beitragen. N2 - Las regiones costeras tectónicamente activas están generalmente asociadas con zonas de subducción, las cuales son recurrentemente afectadas por megaterremotos de gran magnitud. El relieve costero es modelado por el efecto combinado de variaciones eustáticas y patrones de alzamiento tectónico heterogéneos, los cuales son acumulados luego de varios ciclos de megaterremotos. Sin embargo, la correlación entre los patrones de deformación asociados a megaterremotos y la persistente segmentación de las zonas de antearco, especialmente en Chile, no han sido aún entendidos del todo. Por otra parte, los métodos normalmente usados para estimar deformación permanente y basados en marcadores geomorfológicos, como las terrazas marinas, han permanecido basados en aproximaciones cualitativas y no repetibles. Esta situación es contrastante con el rápido avance de modelos de elevación digital de alta resolución como Light Detection and Ranging (LiDAR) y batimetrías de última generación. A lo largo de esta tesis me enfoco en estudiar la deformación permanente desde un punto de vista holístico: Desde los métodos usados para medir deformación permanente, hasta el estudio de los procesos responsables de su acumulación en la corteza. Mi investigación se enfoca específicamente en dos aspectos: Desarrollar nuevos métodos para medir deformación permanente usando terrazas marinas y comparar la magnitud de la deformación permanente con diferentes escalas temporales de deformación registrada durante las distintas fases del ciclo sísmico a lo largo de la zona de ruptura del (M8.8) Terremoto Maule 2010. En esta tesis he desarrollado dos métodos para determinar tasas de deformación en terrazas marinas del tipo wave-built y wave-cut. Para el primero, me enfoco en estudiar un ejemplo arquetípico de terraza marina tipo wave-built en Isla Santa María, mapeando su estratigrafía en detalle y reconociendo patrones de eventos de reocupación datados mediante once edades de radiocarbono (14C). He desarrollado un método para vincular los patrones de reocupación con variaciones del nivel del mar mediante la iteración de curvas relativas del nivel del mar para un rango de tasas de alzamiento. El mejor ajuste entre nivel del mar relativo y los patrones estratigráficos señala una tasa de alzamiento de 1.5 ± 0.3 m/ka. El segundo método es un software de interfaz gráfica llamado TerraceM® y desarrollado usando Matlab®. Esta novedosa herramienta permite determinar el shoreline-angle en terrazas del tipo wave-cut para diferentes escenarios geomorfológicos. Para validar estos métodos he seleccionado zonas de prueba con disponibilidad de topografía LiDAR a lo largo de la zona de ruptura del Terremoto Maule (2010), en Chile, y en California, USA. TerraceM permite determinar la ubicación tridimensional del shoreline-angle, el cual es usado para calcular tasas de deformación permanente. El shoreline-angle es localizado mediante la intersección de interpolaciones lineales, las que son usadas para definir la paleo plataforma y el paleo acantilado en perfiles topográficos swath. La precisión y exactitud de las mediciones con TerraceM es testeada comprando los resultados con mapeos previos y mediante un experimento de respetabilidad con estudiantes en el laboratorio de computación de la Universidad de Potsdam. He combinado los métodos creados anteriormente, para analizar terrazas del tipo wave-cut y wave-built, con el objetivo de medir la deformación permanente acumulada a lo largo de la zona de ruptura del Terremoto Maule (2010). Las terrazas tipo wave-built fueron datadas usando doce edades de Luminiscencia Estimulada por Luz Infrarroja (IRSL), las terrazas wave-cut fueron estudiadas utilizando 170 perfiles swaths alineados. Mediante la comparación de deslizamiento co-sísmico, acople intersísmico y tasas de deformación permanente he detectado tres áreas de alto alzamiento tectónico, plegamiento de terrazas marinas y zonas desplazadas por fallas activas. Estas tres áreas coinciden con zonas de alto deslizamiento cosísmico y acople, y con el limite espacial de al menos ocho megaterremotos históricos (M8-9.5). Propongo que las zonas de plegamiento de terrazas marinas en Arauco y Topocalma reflejan cambios en fricción de la zona de interplaca, que da como resultado la formación de barreras discretas para la propagación de megaterremotos. Con el objetivo de explorar la aplicación de geomorfología cuantitativa y marcadores geomorfológicos en ambientes submarinos, he desarrollado un estudio local de para determinar tasas de alzamiento tectónico utilizando líneas de costa sumergidas en el Golfo de Arauco, en la parte sur de la zona de ruptura del Terremoto Maule (2010). Utilizo una metodología multidisciplinaria que incluye: morfometría, sedimentología, paleontología, morfoscopía 3D y un modelo de evolución del relieve, con el objetivo de reconocer, cartografiar, y medir tasas y patrones de deformación permanente en ambientes submarinos. Luego, se utilizó un modelo elástico para reproducir los patrones de deformación permanente de una falla ramificada (splay- fault) definida como Sistema de Falla Santa María. El mejor modelo sugiere una estructura inversa con una tasa de deslizamiento de 3.7 m/ka durante los últimos ~30 ka. El registro de cambios del nivel del terreno durante el ciclo sísmico en Isla Santa María sugiere que la mayor parte de la deformación es acumulada a través de la reactivación de fallas ramificadas durante megaterremotos como el Maule (2010). Si consideramos 150 a 200 años como tiempo de recurrencia de estos mega eventos, un deslizamiento de entre 0.3 y 0.7 metros por evento sería necesario para equilibrar la tasa de deslizamiento de 3.7 m/ka. Sin embargo, si la falla se deslizara cada ~1000 años, sugiriendo que solo algunos terremotos podrían reactivarla, un deslizamiento de ~3.5 metros por evento serían necesarios para equilibrar la tasa de deslizamiento. Tal evento sería equivalente a un terremoto magnitud ~6.7 que sería capaz de producir un tsunami local. Los resultados de esta tesis entregan información nueva y fundamental acerca de la cantidad de deformación permanente y los posibles mecanismos asociados a esta deformación a escala de miles de años a lo largo de la zona de ruptura del M8.8 Terremoto Maule (2010). Además, los resultados de esta tesis destacan la aplicación de métodos de geomorfología cuantitativa, incluyendo nuevas herramientas computacionales como TerraceM®, el cual ayudará a expandir el uso de la geomorfología cuantitativa y métodos repetibles, además de mejorar la precisión y exactitud de estimaciones de deformación permanente en zonas costeras. Esta información es imprescindible para una adecuada ponderación de riesgos geológicos en zonas costeras y para anticipar escenarios de terremotos y tsunamis realísticos. KW - marine terraces KW - geomorphology KW - earthquake KW - subduction zone KW - permanent deformation KW - shorelines KW - Erdbeben KW - Geomorphologie KW - marine Terrassen KW - permanente Verformung KW - Küstenlinien KW - Subduktionszone Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102652 ER - TY - THES A1 - Kieling, Katrin T1 - Quantification of ground motions by broadband simulations T1 - Quantifizierung von Bodenbewegung durch Breitband-Simulationen N2 - In many procedures of seismic risk mitigation, ground motion simulations are needed to test systems or improve their effectiveness. For example they may be used to estimate the level of ground shaking caused by future earthquakes. Good physical models for ground motion simulation are also thought to be important for hazard assessment, as they could close gaps in the existing datasets. Since the observed ground motion in nature shows a certain variability, part of which cannot be explained by macroscopic parameters such as magnitude or position of an earthquake, it would be desirable that a good physical model is not only able to produce one single seismogram, but also to reveal this natural variability. In this thesis, I develop a method to model realistic ground motions in a way that is computationally simple to handle, permitting multiple scenario simulations. I focus on two aspects of ground motion modelling. First, I use deterministic wave propagation for the whole frequency range – from static deformation to approximately 10 Hz – but account for source variability by implementing self-similar slip distributions and rough fault interfaces. Second, I scale the source spectrum so that the modelled waveforms represent the correct radiated seismic energy. With this scaling I verify whether the energy magnitude is suitable as an explanatory variable, which characterises the amount of energy radiated at high frequencies – the advantage of the energy magnitude being that it can be deduced from observations, even in real-time. Applications of the developed method for the 2008 Wenchuan (China) earthquake, the 2003 Tokachi-Oki (Japan) earthquake and the 1994 Northridge (California, USA) earthquake show that the fine source discretisations combined with the small scale source variability ensure that high frequencies are satisfactorily introduced, justifying the deterministic wave propagation approach even at high frequencies. I demonstrate that the energy magnitude can be used to calibrate the high-frequency content in ground motion simulations. Because deterministic wave propagation is applied to the whole frequency range, the simulation method permits the quantification of the variability in ground motion due to parametric uncertainties in the source description. A large number of scenario simulations for an M=6 earthquake show that the roughness of the source as well as the distribution of fault dislocations have a minor effect on the simulated variability by diminishing directivity effects, while hypocenter location and rupture velocity more strongly influence the variability. The uncertainty in energy magnitude, however, leads to the largest differences of ground motion amplitude between different events, resulting in a variability which is larger than the one observed. For the presented approach, this dissertation shows (i) the verification of the computational correctness of the code, (ii) the ability to reproduce observed ground motions and (iii) the validation of the simulated ground motion variability. Those three steps are essential to evaluate the suitability of the method for means of seismic risk mitigation. N2 - In vielen Verfahren zur Minimierung seismischen Risikos braucht man Seismogramme, um die Effektivität von Systemen zu testen oder diese zu verbessern. So können realistische Bodenbewegungen genutzt werden, um das Ausmaß der Erschütterungen durch zukünftige Erdbeben abzuschätzen. Gute physikalische Bodenbewegungsmodelle haben auch das Potential, Lücken in den beobachteten Datensätzen zu schließen und somit Gefährdungsabschätzungen zu verbessern. Da die in der Natur beobachtete Bodenbewegung einer gewissen Variabilität unterliegt, von der ein Teil nicht durch makroskopische Parameter wie Magnitude oder Position des Erdbebens erklärt werden kann, ist es wünschenswert, dass ein gutes physikalisches Modell nicht nur ein einzelnes Seismogramm produziert, sondern auch die natürliche Variabilität widerspiegelt. In dieser Arbeit beschreibe ich eine Methode zur Modellierung von realistischen Bodenbewegungen, die – aufgrund ihrer einfachen Modellkonfiguration – mehrere Szenario-Simulationen ermöglicht. Dabei konzentriere ich mich auf zwei Aspekte: Einerseits nutze ich ein deterministisches Verfahren für die Wellenausbreitung für den gesamten Frequenzbereich, von der statischen Deformation bis etwa 10 Hz, unter Berücksichtigung der Variabilität der Quelle durch die Einbeziehung von selbstähnlichen Slipverteilungen und rauen Störungsflächen. Andererseits skaliere ich das Quellspektrum so, dass die modellierte Wellenform die abgestrahlte seismische Ener-gie wiedergibt. Damit überprüfe ich, ob die Energie-Magnitude als Stellgröße geeignet ist, die den Anteil der Energie beschreibt, der im Hochfrequenzbereich abgestrahlt wird. Der Vorteil der Energie- Magnitude ist, dass diese aus Beobachtungen, sogar in sehr kurzer Zeit, ermittelt werden kann. Anwendungen der entwickelten Methode für das Wenchuan (China) Erdbeben von 2008, das Tokachi-Oki (Japan) Erdbeben von 2003 und das Northridge (Kalifornien, USA) Erdbeben von 1994 demonstrieren, dass durch eine feine Diskretisierung und kleinskalige Variabilität in der Quelle hohe Frequenzen ausreichend in die Wellenform eingeführt werden, was den deterministischen Ansatz auch im Hochfrequenzbereich bestätigt. Ich zeige, dass die Energie-Magnitude verwendet werden kann um den Hochfrequenzanteil in Bodenbewegungssimulationen zu kalibrieren. Da die determistische Wellenausbreitung auf den gesamten Frequenzbereich angewandt wird, können die Variabilitäten, die durch parametrische Unsicherheiten in der Quellbeschreibung entstehen, beziffert werden. Zahlreiche Simulationen für ein M=6 Beben zeigen, dass die Rauigkeit der Quelle und die Slipverteilung durch Minderung der Direktivitätseffekte die simulierte Variabilität der Bodenbewegung geringfügig verringern. Dagegen haben die Bruchgeschwindigkeit und die Lage des Hypozentrums einen stärkeren Einfluss auf die Variabilität. Die Unsicherheit in der Energie-Magnitude dagegen führt zu großen Unterschieden zwischen verschiedenen Erdbebensimulationen, welche größer sind als die beobachtete Variabilität von Bodenbewegungen. In Bezug auf die vorgestellte Methode zeigt diese Arbeit (i) den Nachweis der Richtigkeit des Computerprogramms, (ii) die Eignung zur Modellierung beobachteter Bodenbewegung und (iii) den Vergleich der simulierten Variabilität von Bodenbewegung mit der beobachteten. Dies sind die ersten drei Schritte auf dem Weg zur Nutzbarkeit von Bodenbewegungssimulationen in Maßnahmen zur Verminderung des seismischen Risikos. KW - ground motions KW - earthquake KW - simulation KW - seismic risk KW - ground motion variability KW - Bodenbewegung KW - Erdbeben KW - seismisches Risiko KW - Simulation KW - Variabilität von Bodenbewegung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85989 ER - TY - THES A1 - Mohr, Christian Heinrich T1 - Hydrological and erosion responses to man-made and natural disturbances : insights from forested catchments in South-central Chile T1 - Hydrologische und Erosions-Reaktionen auf anthropogene und natürliche Störungen : Einblicke aus bewaldeten Einzugsgebieten im südlichen Zentralchile N2 - Logging and large earthquakes are disturbances that may significantly affect hydrological and erosional processes and process rates, although in decisively different ways. Despite numerous studies that have documented the impacts of both deforestation and earthquakes on water and sediment fluxes, a number of details regarding the timing and type of de- and reforestation; seismic impacts on subsurface water fluxes; or the overall geomorphic work involved have remained unresolved. The main objective of this thesis is to address these shortcomings and to better understand and compare the hydrological and erosional process responses to such natural and man-made disturbances. To this end, south-central Chile provides an excellent natural laboratory owing to its high seismicity and the ongoing conversion of land into highly productive plantation forests. In this dissertation I combine paired catchment experiments, data analysis techniques, and physics-based modelling to investigate: 1) the effect of plantation forests on water resources, 2) the source and sink behavior of timber harvest areas in terms of overland flow generation and sediment fluxes, 3) geomorphic work and its efficiency as a function of seasonal logging, 4) possible hydrologic responses of the saturated zone to the 2010 Maule earthquake and 5) responses of the vadose zone to this earthquake. Re 1) In order to quantify the hydrologic impact of plantation forests, it is fundamental to first establish their water balances. I show that tree species is not significant in this regard, i.e. Pinus radiata and Eucalyptus globulus do not trigger any decisive different hydrologic response. Instead, water consumption is more sensitive to soil-water supply for the local hydro-climatic conditions. Re 2) Contradictory opinions exist about whether timber harvest areas (THA) generate or capture overland flow and sediment. Although THAs contribute significantly to hydrology and sediment transport because of their spatial extent, little is known about the hydrological and erosional processes occurring on them. I show that THAs may act as both sources and sinks for overland flow, which in turn intensifies surface erosion. Above a rainfall intensity of ~20 mm/h, which corresponds to <10% of all rainfall, THAs may generate runoff whereas below that threshold they remain sinks. The overall contribution of Hortonian runoff is thus secondary considering the local rainfall regime. The bulk of both runoff and sediment is generated by Dunne, saturation excess, overland flow. I also show that logging may increase infiltrability on THAs which may cause an initial decrease in streamflow followed by an increase after the groundwater storage has been refilled. Re 3) I present changes in frequency-magnitude distributions following seasonal logging by applying Quantile Regression Forests at hitherto unprecedented detail. It is clearly the season that controls the hydro-geomorphic work efficiency of clear cutting. Logging, particularly dry seasonal logging, caused a shift of work efficiency towards less flashy and mere but more frequent moderate rainfall-runoff events. The sediment transport is dominated by Dunne overland flow which is consistent with physics-based modelling using WASA-SED. Re 4) It is well accepted that earthquakes may affect hydrological processes in the saturated zone. Assuming such flow conditions, consolidation of saturated saprolitic material is one possible response. Consolidation raises the hydraulic gradients which may explain the observed increase in discharge following earthquakes. By doing so, squeezed water saturates the soil which in turn increases the water accessible for plant transpiration. Post-seismic enhanced transpiration is reflected in the intensification of diurnal cycling. Re 5) Assuming unsaturated conditions, I present the first evidence that the vadose zone may also respond to seismic waves by releasing pore water which in turn feeds groundwater reservoirs. By doing so, water tables along the valley bottoms are elevated thus providing additional water resources to the riparian vegetation. By inverse modelling, the transient increase in transpiration is found to be 30-60%. Based on the data available, both hypotheses, are not testable. Finally, when comparing the hydrological and erosional effects of the Maule earthquake with the impact of planting exotic plantation forests, the overall observed earthquake effects are comparably small, and limited to short time scales. N2 - Landmanagement und tektonische Prozesse haben einen erheblichen Einfluss auf das Abflussverhalten und den Wasser-, sowie den Sedimenthaushalt von Gebirgsregionen. Sowohl forstwirtschaftliche Bewirtschaftung, als auch starke Erdbeben sind Impulse, die hydrologische und Erosionsprozesse, sowie deren Prozessraten beeinflussen. Obwohl zahlreiche Arbeiten bereits den Einfluss von forstlicher Bewirtschaftung (Abholzungen, Aufforstungen) als auch von Erdbeben auf Wasser und Sedimentflüsse dokumentiert haben, bleiben wichtige Fragen offen. Wie entscheidend ist der Zeitpunkts der Abholzung und des nachfolgenden Wiederaufforstens? Wie wirken seismische Störungen auf unterirdische Wasserflüsse? Wie ändert sich die geomorphologische Arbeit nach Kahlschlägen? Zur Erforschung dieser Fragen bietet sich das südliche Zentralchile aufgrund seiner hohen lokalen seismischen Aktivität und der kontinuierlichen Umwidmung von Flächen in hochproduktive Plantagenwälder hervorragend an. Letztere verursachen sich häufig verändernde Umweltbedingungen durch kurze forstwirtschaftliche Rotationszyklen. Diese Dissertation betrachtet Einzugsgebiete mit vergleichbarer naturräumlicher Ausstattung. Dabei werden experimentelle Datenerhebung, ein Monitoring-Programm und Datenanalysetechniken mit prozessbasierter Modellierung kombiniert. Ziel der vorliegenden Arbeit ist: 1) die Untersuchung des Einflusses von Plantagenwäldern auf den lokalen Wasserhaushalt. Hier zeigt sich, dass die Baumart (Pinus radiata vs. Eucalyptus globulus) keinen entscheidenden Einfluss auf die lokale Wasserbilanz hat. Vielmehr ist der Bodenwasserspeicher unter dem gegebenen lokalen Hydroklima der entscheidende Faktor für den Wasserverbrauch. 2) die Untersuchung des Verhaltens von Kahlschlagflächen im Hinblick auf Quellen oder Senkenwirkung für Oberflächenabfluss und Sedimenttransport. Hier zeigt sich, dass diese Flächen sowohl als Quelle als auch als Senke für Oberflächenabfluss und Sedimenttransport wirken können – abhängig von der Regenintensität. Übersteigt diese ~20 mm/h, was <10 % der lokalen Niederschlagsereignisse entspricht, generieren Kahlschlagflächen Horton-Oberflächenabfluss (Infiltrationsüberschuss) und Sedimenttransport. Unterhalb dieses Schwellenwerts wirken sie als Senke. In Anbetracht der lokalen Niederschlagintensitäten ist der Gesamtbeitrag des Horton-Oberflächenabflusses daher sekundär. Der Großteil des Abflusses entsteht durch Dunne-Oberflächenabfluss (Sättigungsüberschuss). Zudem zeigt die vorliegende Arbeit, dass Abholzen die Infiltrabilität erhöhen kann. Dies führte dazu, dass zunächst der Gebietsabfluss abfällt bevor er erst nach Auffüllen des Grundwasserspeichers signifikant ansteigt. 3) Die Untersuchung des Einflusses von Kahlschlägen auf die hydro-geomorphologische Arbeit und ihre Effizienz. Durch das Anwenden von Quantile Regression Forests (QRF) wird auf kurzer Prozessskala gezeigt, dass Abholzung zu unterschiedlicher Jahreszeit zu signifikanten Veränderungen im Sedimenttransport führt. Vor allem Kahlschläge die während der Trockenzeit durchgeführt werden, verursachten einen Bedeutungsverlust von seltenen, stärkeren Abflussereignissen zu Gunsten der häufigeren, jedoch weniger starken Ereignissen. Hierbei dominierte der Dunne-Oberflächenabfluss. Dies stimmt mit den Ergebnissen eines prozessbasierten hydrologischen Modells (WASA-SED) überein. Es ist somit eindeutig die Jahreszeit, die die Leistung der hydro-geomorphologischer Arbeit nach Kahlschlägen prägte. 4) die Untersuchung von Grundwasserreaktionen auf das M8.8 Maule Erdbeben. Unter Grundwasserbedingungen kann der gesättigte Saprolith mit Verdichtung auf die Erdbebenerschütterungen reagieren. Dieser Prozess erhöht den hydraulischen Gradienten, der eine plausible Erklärung für den beobachteten Anstieg am Gebietsausfluss nach dem Erdbeben liefert. Die Verdichtung mobilisiert Grundwasser, das zudem von der ungesättigten Bodenmatrix aufgenommen werden kann. Hierdurch erhöht sich das Wasservolumen im Wurzelraum und begünstigt die Pflanzaktivität. Eine solche Aktivitätserhöhung spiegelt sich in verstärkten Tagesgängen wider. 5) die Untersuchung von hydrologischen Reaktionen auf das Erdbeben in der ungesättigten Zone. Hier zeigt sich, dass auch Bodenwasser aus der ungesättigten Bodenzone durch Erdbebenerschütterungen freigesetzt werden kann und den darunter liegenden Grundwasserspeicher zufließt. Hierdurch steigt der Grundwasserspiegel in den Talböden und erhöht dort die Pflanzenwasserverfügbarkeit. Durch inverse Modellierung wurde ein erdbebenbedingter Anstieg der Pflanzenaktivität von 30-60% quantifiziert. Beide Hypothesen sind jedoch auf Basis der verfügbaren Daten nicht eindeutig verifizierbar. Vergleicht man den Effekt des Erdbebens auf den Wasserhaushalt mit dem Effekt der exotischen Plantagenwälder zeigt sich, dass die Gesamtwirkung des Erdbebens auf den Wasserhaushalt vergleichsweise klein war und sich zudem auf kurze Zeiträume beschränkte. KW - Hydrologie KW - Erosion KW - Chile KW - Waldbewirtschaftung KW - Erdbeben KW - hydrology KW - erosion KW - Chile KW - forest management KW - earthquake Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70146 ER - TY - THES A1 - Shirzaei, Manoochehr T1 - Crustal deformation source monitoring using advanced InSAR time series and time dependent inverse modeling T1 - Monitoring der Quellen von Krustendeformationen mit Hilfe modernster InSAR Zeitreihen und zeitabhängiger inverser Modellierung N2 - Crustal deformation can be the result of volcanic and tectonic activity such as fault dislocation and magma intrusion. The crustal deformation may precede and/or succeed the earthquake occurrence and eruption. Mitigating the associated hazard, continuous monitoring of the crustal deformation accordingly has become an important task for geo-observatories and fast response systems. Due to highly non-linear behavior of the crustal deformation fields in time and space, which are not always measurable using conventional geodetic methods (e.g., Leveling), innovative techniques of monitoring and analysis are required. In this thesis I describe novel methods to improve the ability for precise and accurate mapping the spatiotemporal surface deformation field using multi acquisitions of satellite radar data. Furthermore, to better understand the source of such spatiotemporal deformation fields, I present novel static and time dependent model inversion approaches. Almost any interferograms include areas where the signal decorrelates and is distorted by atmospheric delay. In this thesis I detail new analysis methods to reduce the limitations of conventional InSAR, by combining the benefits of advanced InSAR methods such as the permanent scatterer InSAR (PSI) and the small baseline subsets (SBAS) with a wavelet based data filtering scheme. This novel InSAR time series methodology is applied, for instance, to monitor the non-linear deformation processes at Hawaii Island. The radar phase change at Hawaii is found to be due to intrusions, eruptions, earthquakes and flank movement processes and superimposed by significant environmental artifacts (e.g., atmospheric). The deformation field, I obtained using the new InSAR analysis method, is in good agreement with continuous GPS data. This provides an accurate spatiotemporal deformation field at Hawaii, which allows time dependent source modeling. Conventional source modeling methods usually deal with static deformation field, while retrieving the dynamics of the source requires more sophisticated time dependent optimization approaches. This problem I address by combining Monte Carlo based optimization approaches with a Kalman Filter, which provides the model parameters of the deformation source consistent in time. I found there are numerous deformation sources at Hawaii Island which are spatiotemporally interacting, such as volcano inflation is associated to changes in the rifting behavior, and temporally linked to silent earthquakes. I applied these new methods to other tectonic and volcanic terrains, most of which revealing the importance of associated or coupled deformation sources. The findings are 1) the relation between deep and shallow hydrothermal and magmatic sources underneath the Campi Flegrei volcano, 2) gravity-driven deformation at Damavand volcano, 3) fault interaction associated with the 2010 Haiti earthquake, 4) independent block wise flank motion at the Hilina Fault system, Kilauea, and 5) interaction between salt diapir and the 2005 Qeshm earthquake in southern Iran. This thesis, written in cumulative form including 9 manuscripts published or under review in peer reviewed journals, improves the techniques for InSAR time series analysis and source modeling and shows the mutual dependence between adjacent deformation sources. These findings allow more realistic estimation of the hazard associated with complex volcanic and tectonic systems. N2 - Oberflächendeformationen können eine Folge von vulkanischen und tektonischen Aktivitäten sein, wie etwa Plattenverschiebungen oder Magmaintrusion. Die Deformation der Erdkruste kann einem Erdbeben oder einem Vulkanausbruch vorausgehen und/oder folgen. Um damit drohende Gefahren für den Menschen zu verringern, ist die kontinuierliche Beobachtung von Krustendeformationen eine wichtige Aufgabe für Erdobservatorien und Fast-Responce-Systems geworden. Auf Grund des starken nicht-linearen Verhaltens von Oberflächendeformationsgebiet in Zeit und Raum, die mit konventionellen Methoden nicht immer erfasst werden (z.B., Nivellements), sind innovative Beobachtungs- und Analysetechniken erforderlich. In dieser Dissertation beschreibe ich Methoden, welche durch Mehrfachbeobachtungen der Erdoberfläche nit satellitengestützem Radar eine präzise und akkurate Abbildung der raumzeitlichen Oberflächendeformationen ermöglichen. Um die Bildung und Entwicklung von solchen raumzeitlichen Deformationsgebieten besser zu verstehen, zeige ich weiterhin neuartige Ansätze zur statischen und zeitabhängigen Modellinversion. Radar-Interferogramme weisen häufig Gebiete auf, in denen das Phasensignal dekorreliert und durch atmosphärische Laufzeitverzögerung verzerrt ist. In dieser Arbeit beschreibe ich wie Probleme des konventionellen InSAR überwunden werden können, indem fortgeschrittene InSAR-Methoden, wie das Permanent Scatterer InSAR (PSI) und Small Baseline Subsets (SBAS), mit einer Wavelet-basierten Datenfilterung verknüpft werden. Diese neuartige Analyse von InSAR Zeitreihen wird angewendet, um zum Beispiel nicht-lineare Deformationsprozesse auf Hawaii zu überwachen. Radar-Phasenänderungen, gemessen auf der Pazifikinsel, beruhen auf Magmaintrusion, Vulkaneruption, Erdbeben und Flankenbewegungsprozessen, welche durch signifikante Artefakte (z.B. atmosphärische) überlagert werden. Mit Hilfe der neuen InSAR-Analyse wurde ein Deformationsgebiet ermittelt, welches eine gute Übereinstimmung mit kontinuierlich gemessenen GPS-Daten aufweist. Auf der Grundlage eines solchen, mit hoher Genauigkeit gemessenen, raumzeitlichen Deformationsgebiets wird für Hawaii eine zeitabhängige Modellierung der Deformationsquelle ermöglicht. Konventionelle Methoden zur Modellierung von Deformationsquellen arbeiten normalerweise mit statischen Daten der Deformationsgebiete. Doch um die Dynamik einer Deformationsquelle zu untersuchen, sind hoch entwickelte zeitabhängige Optimierungsansätze notwendig. Dieses Problem bin ich durch eine Kombination von Monte-Carlo-basierten Optimierungsansätzen mit Kalman-Filtern angegangen, womit zeitlich konsistente Modellparameter der Deformationquelle gefunden werden. Ich fand auf der Insel Hawaii mehrere, raumzeitlich interagierende Deformationsquellen, etwa Vulkaninflation verknüpft mit Kluftbildungen und Veränderungen in bestehenden Klüften sowie zeitliche Korrelationen mit stillen Erdbeben. Ich wendete die neuen Methoden auf weitere tektonisch und vulkanisch aktive Gebiete an, wo häufig die eine Interaktion der Deformationsquellen nachgewiesen werden konnte und ihrer bedeutung untersucht wurde. Die untersuchten Gebiete und Deformationsquellen sind 1) tiefe und oberflächliche hydrothermale und magmatische Quellen unterhalb des Campi Flegrei Vulkans, 2) gravitationsbedingte Deformationen am Damawand Vulkan, 3) Störungsdynamik in Verbindung mit dem Haiti Beben im Jahr 2010, 4) unabhängige blockweise Flankenbewegung an der Hilina Störungszone, und 5) der Einfluss eines Salzdiapirs auf das Qeshm Erdbeben im Süd-Iran im Jahr 2005. Diese Dissertation, geschrieben als kumulative Arbeit von neun Manuskripten, welche entweder veröffentlicht oder derzeit in Begutachtung bei ‘peer-review’ Zeitschriften sind, technische Verbesserungen zur Analyse von InSAR Zeitreihen vor sowie zur Modellierung von Deformationsquellen. Sie zeigt die gegenseitige Beeinflussung von benachbarten Deformationsquellen, und sie ermöglicht, realistischere Einschätzungen von Naturgefahren, die von komplexen vulkanischen und tektonischen Systemen ausgehen. KW - InSAR KW - Vulkan KW - Erdbeben KW - inverse Modellierung KW - InSAR KW - Vulcano KW - earthquake KW - inverse modeling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50774 ER - TY - THES A1 - Höchner, Andreas T1 - GPS based analysis of earthquake induced phenomena at the Sunda Arc T1 - GPS-basierte Analyse erdbebeninduzierter Phänomene am Sundabogen N2 - Indonesia is one of the countries most prone to natural hazards. Complex interaction of several tectonic plates with high relative velocities leads to approximately two earthquakes with magnitude Mw>7 every year, being more than 15% of the events worldwide. Earthquakes with magnitude above 9 happen far more infrequently, but with catastrophic effects. The most severe consequences thereby arise from tsunamis triggered by these subduction-related earthquakes, as the Sumatra-Andaman event in 2004 showed. In order to enable efficient tsunami early warning, which includes the estimation of wave heights and arrival times, it is necessary to combine different types of real-time sensor data with numerical models of earthquake sources and tsunami propagation. This thesis was created as a result of the GITEWS project (German Indonesian Tsunami Early Warning System). It is based on five research papers and manuscripts. Main project-related task was the development of a database containing realistic earthquake scenarios for the Sunda Arc. This database provides initial conditions for tsunami propagation modeling used by the simulation system at the early warning center. An accurate discretization of the subduction geometry, consisting of 25x150 subfaults was constructed based on seismic data. Green’s functions, representing the deformational response to unit dip- and strike slip at the subfaults, were computed using a layered half-space approach. Different scaling relations for earthquake dimensions and slip distribution were implemented. Another project-related task was the further development of the ‘GPS-shield’ concept. It consists of a constellation of near field GPS-receivers, which are shown to be very valuable for tsunami early warning. The major part of this thesis is related to the geophysical interpretation of GPS data. Coseismic surface displacements caused by the 2004 Sumatra earthquake are inverted for slip at the fault. The effect of different Earth layer models is tested, favoring continental structure. The possibility of splay faulting is considered and shown to be a secondary order effect in respect to tsunamigenity for this event. Tsunami models based on source inversions are compared to satellite radar altimetry observations. Postseismic GPS time series are used to test a wide parameter range of uni- and biviscous rheological models of the asthenosphere. Steady-state Maxwell rheology is shown to be incompatible with near-field GPS data, unless large afterslip, amounting to more than 10% of the coseismic moment is assumed. In contrast, transient Burgers rheology is in agreement with data without the need for large aseismic afterslip. Comparison to postseismic geoid observation by the GRACE satellites reveals that even with afterslip, the model implementing Maxwell rheology results in amplitudes being too small, and thus supports a biviscous asthenosphere. A simple approach based on the assumption of quasi-static deformation propagation is introduced and proposed for inversion of coseismic near-field GPS time series. Application of this approach to observations from the 2004 Sumatra event fails to quantitatively reconstruct the rupture propagation, since a priori conditions are not fulfilled in this case. However, synthetic tests reveal the feasibility of such an approach for fast estimation of rupturing properties. N2 - Indonesien ist eines der am stärksten von Naturkatastrophen bedrohten Länder der Erde. Die komplexe Interaktion mehrer tektonischer Platten, die sich mit hohen Relativgeschwindigkeiten zueinander bewegen, führt im Mittel zu ungefähr zwei Erdbeben mit Magnitude Mw>7 pro Jahr, was mehr als 15% der Ereignisse weltweit entspricht. Beben mit Magnitude über 9 sind weitaus seltener, haben aber katastrophale Folgen. Die schwerwiegendsten Konsequenzen hierbei werden durch Tsunamis verursacht, welche durch diese Subduktionsbeben ausgelöst werden, wie das Sumatra-Andamanen Ereignis von 2004 gezeigt hat. Um eine wirksame Tsunami-Frühwarnung zu ermöglichen, welche die Abschätzung der Wellenhöhen und Ankunftszeiten beinhaltet, ist es erforderlich, verschieden Arten von Echtzeit-Sensordaten mit numerischen Modellen für die Erdbebenquelle und Tsunamiausbreitung zu kombinieren. Diese Doktorarbeit wurde im Rahmen des GITEWS-Projektes (German Indonesian Tsunami Early Warning System) erstellt und umfasst fünf Fachpublikationen und Manuskripte. Projektbezogene Hauptaufgabe war die Erstellung einer Datenbank mit realistischen Bebenszenarien für den Sundabogen. Die Datenbank beinhaltet Anfangsbedingungen für die Tsunami-Ausbreitungsmodellierung und ist Teil des Simulationssystems im Frühwarnzentrum. Eine sorgfältige Diskretisierung der Subduktionsgeometrie, bestehend aus 25x150 subfaults, wurde basierend auf seismischen Daten erstellt. Greensfunktionen, welche die Deformation, hervorgerufen durch Verschiebung an den subfaults ausmachen, wurden mittels eines semianalytischen Verfahrens für den geschichteten Halbraum berechnet. Verschiedene Skalierungsrelationen für Erdbebendimension und slip-Verteilung wurden implementiert. Eine weitere projektbezogene Aufgabe war die Weiterentwicklung des ‚GPS-Schild’-Konzeptes. Dieses besteht aus einer Konstellation von GPS-Empfängern im Nahfeldbereich, welche sich als sehr wertvoll für die Tsunami-Frühwarnung erweisen. Der größere Teil dieser Doktorarbeit beschäftigt sich mit der geophysikalischen Interpretation von GPS-Daten. Coseismische Verschiebungen an der Erdoberfläche, ausgelöst durch das Erdbeben von 2004, werden nach slip an der Verwerfung invertiert. Die Wirkung verschiedener Erdschichtungsmodelle wird getestet und resultiert in der Bevorzugung einer kontinentalen Struktur. Die Möglichkeit von splay-faulting wird untersucht und erweist sich als zweitrangiger Effekt bezüglich der Tsunamiwirkung für dieses Ereignis. Die auf der Quelleninversion basierenden Tsunamimodelle werden mit satellitengestützen Radaraltimetriedaten verglichen. Postseismische GPS-Daten werden verwendet, um einen weiten Parameterbereich uni- und bi-viskoser Modelle der Asthenosphäre zu testen. Dabei stellt sich stationäre Maxwell-Rheologie als inkompatibel mit Nahfeld-GPS-Zeitreihen heraus, es sei denn, eine große Quantität an afterslip, entsprechend etwa 10% des coseismischen Momentes, wird angenommen. Im Gegensatz dazu ist die transiente Burgers-Rheologie ohne große Mengen an afterslip kompatibel zu den Beobachtungen. Der Vergleich mit postseismischen Geoidbeobachtungen durch die GRACE-Satelliten zeigt, dass das Modell basierend auf Maxwell-Rheologie, auch mit afterslip, zu kleine Amplituden liefert, und bekräftigt die Annahme einer biviskosen Rheologie der Asthenosphäre. Ein einfacher Ansatz, der auf einer quasi-statischen Deformationsausbreitung beruht, wird eingeführt und zur Inversion coseismischer Nahfeld-GPS-Zeitreihen vorgeschlagen. Die Anwendung dieses Ansatzes auf Beobachtungen vom Sumatra-Beben von 2004 ermöglicht nicht die quantitative Rekonstruktion der Ausbreitung des Bruches, da die notwendigen Bedingungen in diesem Fall nicht erfüllt sind. Jedoch zeigen Experimente an synthetischen Daten die Gültigkeit eines solchen Ansatzes zur raschen Abschätzung der Bruchausbreitungseigenschaften. KW - GPS KW - Erdbeben KW - Tsunami KW - Rheologie KW - GITEWS KW - GPS KW - Earthquake KW - Tsunami KW - Rheology KW - GITEWS Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53166 ER - TY - THES A1 - Hakimhashemi, Amir Hossein T1 - Time-dependent occurrence rates of large earthquakes in the Dead Sea fault zone and applications to probabilistic seismic hazard assessments T1 - Zeitabhängige Auftretensrate großer Erdbeben entlang der Tote-Meer-Störungszone und ihre Einbeziehung in eine probabilistische seismische Gefährdungseinschätzung N2 - Die relativ hohe seismische Aktivität der Tote-Meer-Störungszone (Dead Sea Fault Zone - DSFZ) ist mit einem hohen Gefahrenpotential verbunden, welches zu einem erheblichen Erdbebenrisiko für die Ballungszentren in den Ländern Syrien, Libanon, Palästina, Jordanien und Israel führt. Eine Vielzahl massiver, zerstörerischer Erdbeben hat sich in diesem Raum in den letzten zwei Jahrtausenden ereignet. Ihre Wiederholungsrate zeigt Anzeichen für eine zeitliche Abhängigkeit, insbesondere wenn lange Zeiträume in Betracht gezogen werden. Die Berücksichtigung der zeitlichen Abhängigkeit des Auftretens von Erdbeben ist für eine realistische seismische Gefährdungseinschätzung von großer Bedeutung. Ziel der vorliegenden Arbeit ist es, anhand des zeitabhängigen Auftretens von Erdbeben eine robuste wahrscheinlichkeitstheoretische seismische Gefährdungseinschätzung am Beispiel der DSFZ zu entwickeln. Mittels dieser Methode soll die zeitliche Abhängigkeit des Auftretens von großen Erdbeben (Mw ≥ 6) untersucht und somit eine Gefährdungseinschätzung für das Untersuchungsgebiet getroffen werden. Primär gilt es zu prüfen, ob das Auftreten von großen Erdbeben tatsächlich einer zeitlichen Abhängigkeit unterliegt und wenn ja, inwiefern diese bestimmt werden kann. Zu diesem Zweck werden insgesamt vier zeitabhängige statistische Verteilungen (Weibull, Gamma, Lognormal und Brownian Passage Time (BPT)) sowie die zeitunabhängige Exponentialverteilung (Poisson-Prozess) getestet. Zur Abschätzung der jeweiligen Modellparameter wird eine modifizierte Methode der gewichteten Maximum-Likelihood-Schätzung (MLE) verwendet. Um einzuschätzen, ob die Wiederholungsrate von Erdbeben einer unimodalen oder multimodalen Form folgt, wird ein nichtparametrischer Bootstrap-Test für Multimodalität durchgeführt. Im Falle einer multimodalen Form wird neben der MLE zusätzlich eine Erwartungsmaximierungsmethode (EM) herangezogen. Zur Auswahl des am besten geeigneten Modells wird zum einem das Bayesschen Informationskriterium (BIC) und zum anderen der modifizierte Kolmogorow-Smirnow-Goodness-of-Fit-Test angewendet. Abschließend werden mittels der Bootstrap-Methode die Konfidenzintervalle der geschätzten Parameter berechnet. Als Datengrundlage werden Erdbeben mit Mw ≥ 6 seit dem Jahre 300 n. Chr. herangezogen. Das Untersuchungsgebiet erstreckt sich von 29.5° N bis 37° N und umfasst ein ca. 40 km breites Gebiet entlang der DSFZ. Aufgrund der seismotektonischen Situation im Untersuchungsgebiet wird zwischen einer südlichen, zentralen und nördlichen Subzone unterschieden. Dabei kann die südliche Subzone aus Mangel an Daten nicht für die Analysen herangezogen werden. Die Ergebnisse für die zentrale Subzone zeigen keinen signifikanten multimodalen Verlauf der Wiederholungsrate von Erdbeben. Des Weiteren ist kein signifikanter Unterschied zwischen den zeitabhängigen und dem zeitunabhängigem Modell zu verzeichnen. Da das zeitunabhängige Modell vergleichsweise einfach interpretierbar ist, wird die Wiederholungsrate von Erdbeben in dieser Subzone unter Annahme der Exponentialverteilungs-Hypothese abgeschätzt. Sie wird demnach als zeitunabhängig betrachtet und beträgt 9.72 * 10-3 Erdbeben (mit Mw ≥ 6) pro Jahr. Einen besonderen Fall stellt die nördliche Subzone dar. In diesem Gebiet tritt im Durchschnitt alle 51 Jahre ein massives Erdbeben (Mw ≥ 6) auf. Das letzte Erdbeben dieser Größe ereignete sich 1872 und liegt somit bereits 137 Jahre zurück. Somit ist in diesem Gebiet ein Erdbeben dieser Stärke überfällig. Im statistischen Mittel liegt die Zeit zwischen zwei Erdbeben zu 96% unter 137 Jahren. Zudem wird eine deutliche zeitliche Abhängigkeit der Erdbeben-Wiederauftretensrate durch die Ergebnisse der in der Arbeit neu entwickelten statistischen Verfahren bestätigt. Dabei ist festzustellen, dass die Wiederholungsrate insbesondere kurz nach einem Erdbeben eine sehr hohe zeitliche Abhängigkeit aufweist. Am besten repräsentiert werden die seismischen Bedingungen in der genannten Subzone durch ein bi-modales Weibull-Weibull-Modell. Die Wiederholungsrate ist eine glatte Zeitfunktion, welche zwei Häufungen von Datenpunkten in der Zeit nach dem Erdbeben zeigt. Dabei umfasst die erste Häufung einen Zeitraum von 80 Jahren, ausgehend vom Zeitpunkt des jeweiligen Bebens. Innerhalb dieser Zeitspanne ist die Wiederholungsrate extrem zeitabhängig. Die Wiederholungsrate direkt nach einem Beben ist sehr niedrig und steigert sich in den folgenden 10 Jahren erheblich bis zu einem Maximum von 0.024 Erdbeben/Jahr. Anschließend sinkt die Rate und erreicht ihr Minimum nach weiteren 70 Jahren mit 0.0145 Erdbeben/Jahr. An dieses Minimum schließt sich die zweite Häufung von Daten an, dessen Dauer abhängig von der Erdbebenwiederholungszeit ist. Innerhalb dieses Zeitfensters nimmt die Erdbeben-Wiederauftretensrate annähernd konstant um 0.015 Erdbeben/Jahr zu. Diese Ergebnisse bilden die Grundlage für eine zeitabhängige probabilistische seismische Gefährdungseinschätzung (PSHA) für die seismische Quellregion, die den nördlichen Raum der DSFZ umfasst. N2 - The seismicity of the Dead Sea fault zone (DSFZ) during the last two millennia is characterized by a number of damaging and partly devastating earthquakes. These events pose a considerable seismic hazard and seismic risk to Syria, Lebanon, Palestine, Jordan, and Israel. The occurrence rates for large earthquakes along the DSFZ show indications to temporal changes in the long-term view. The aim of this thesis is to find out, if the occurrence rates of large earthquakes (Mw ≥ 6) in different parts of the DSFZ are time-dependent and how. The results are applied to probabilistic seismic hazard assessments (PSHA) in the DSFZ and neighboring areas. Therefore, four time-dependent statistical models (distributions), including Weibull, Gamma, Lognormal and Brownian Passage Time (BPT), are applied beside the exponential distribution (Poisson process) as the classical time-independent model. In order to make sure, if the earthquake occurrence rate follows a unimodal or a multimodal form, a nonparametric bootstrap test of multimodality has been done. A modified method of weighted Maximum Likelihood Estimation (MLE) is applied to estimate the parameters of the models. For the multimodal cases, an Expectation Maximization (EM) method is used in addition to the MLE method. The selection of the best model is done by two methods; the Bayesian Information Criterion (BIC) as well as a modified Kolmogorov-Smirnov goodness-of-fit test. Finally, the confidence intervals of the estimated parameters corresponding to the candidate models are calculated, using the bootstrap confidence sets. In this thesis, earthquakes with Mw ≥ 6 along the DSFZ, with a width of about 20 km and inside 29.5° ≤ latitude ≤ 37° are considered as the dataset. The completeness of this dataset is calculated since 300 A.D. The DSFZ has been divided into three sub zones; the southern, the central and the northern sub zone respectively. The central and the northern sub zones have been investigated but not the southern sub zone, because of the lack of sufficient data. The results of the thesis for the central part of the DSFZ show that the earthquake occurrence rate does not significantly pursue a multimodal form. There is also no considerable difference between the time-dependent and time-independent models. Since the time-independent model is easier to interpret, the earthquake occurrence rate in this sub zone has been estimated under the exponential distribution assumption (Poisson process) and will be considered as time-independent with the amount of 9.72 * 10-3 events/year. The northern part of the DSFZ is a special case, where the last earthquake has occurred in 1872 (about 137 years ago). However, the mean recurrence time of Mw ≥ 6 events in this area is about 51 years. Moreover, about 96 percent of the observed earthquake inter-event times (the time between two successive earthquakes) in the dataset regarding to this sub zone are smaller than 137 years. Therefore, it is a zone with an overdue earthquake. The results for this sub zone verify that the earthquake occurrence rate is strongly time-dependent, especially shortly after an earthquake occurrence. A bimodal Weibull-Weibull model has been selected as the best fit for this sub zone. The earthquake occurrence rate, corresponding to the selected model, is a smooth function of time and reveals two clusters within the time after an earthquake occurrence. The first cluster begins right after an earthquake occurrence, lasts about 80 years, and is explicitly time-dependent. The occurrence rate, regarding to this cluster, is considerably lower right after an earthquake occurrence, increases strongly during the following ten years and reaches its maximum about 0.024 events/year, then decreases over the next 70 years to its minimum about 0.0145 events/year. The second cluster begins 80 years after an earthquake occurrence and lasts until the next earthquake occurs. The earthquake occurrence rate, corresponding to this cluster, increases extremely slowly, such as it can be considered as an almost constant rate about 0.015 events/year. The results are applied to calculate the time-dependent PSHA in the northern part of the DSFZ and neighbouring areas. KW - Zeitanhängig KW - seismische Gefährdung KW - Tote Meer KW - Auftretensrate KW - Erdbeben KW - time dependent KW - seismic hazard KW - Dead Sea KW - occurrence rate KW - earthquake Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52486 ER - TY - THES A1 - Rößler, Dirk T1 - Retrieval of earthquake source parameters in inhomogeneous anisotropic mediawith application to swarm events in West Bohemia in 2000 T1 - Bestimmung von Erdbebenparametern in inhomogenen anisotropen Medien mit Anwendung auf Schwarmbeben im Vogtland im Jahr 2000 N2 - Earthquakes form by sudden brittle failure of rock mostly as shear ruptures along a rupture plane. Beside this, mechanisms other than pure shearing have been observed for some earthquakes mainly in volcanic areas. Possible explanations include complex rupture geometries and tensile earthquakes. Tensile earthquakes occur by opening or closure of cracks during rupturing. They are likely to be often connected with fluids that cause pressure changes in the pore space of rocks leading to earthquake triggering. Tensile components have been reported for swarm earthquakes in West Bohemia in 2000. The aim and subject of this work is an assessment and the accurate determination of such tensile components for earthquakes in anisotropic media. Currently used standard techniques for the retrieval of earthquake source mechanisms assume isotropic rock properties. By means of moment tensors, equivalent forces acting at the source are used to explain the radiated wavefield. Conversely, seismic anisotropy, i.e. directional dependence of elastic properties, has been observed in the earth's crust and mantle such as in West Bohemia. In comparison to isotropy, anisotropy causes modifications in wave amplitudes and shear-wave splitting. In this work, effects of seismic anisotropy on true or apparent tensile source components of earthquakes are investigated. In addition, earthquake source parameters are determined considering anisotropy. It is shown that moment tensors and radiation patterns due to shear sources in anisotropic media may be similar to those of tensile sources in isotropic media. In contrast, similarities between tensile earthquakes in anisotropic rocks and shear sources in isotropic media may exist. As a consequence, the interpretation of tensile source components is ambiguous. The effects that are due to anisotropy depend on the orientation of the earthquake source and the degree of anisotropy. The moment of an earthquake is also influenced by anisotropy. The orientation of fault planes can be reliably determined even if isotropy instead of anisotropy is assumed and if the spectra of the compressional waves are used. Greater difficulties may arise when the spectra of split shear waves are additionally included. Retrieved moment tensors show systematic artefacts. Observed tensile source components determined for events in West Bohemia in 1997 can only partly be attributed to the effects of moderate anisotropy. Furthermore, moment tensors determined earlier for earthquakes induced at the German Continental Deep Drilling Program (KTB), Bavaria, were reinterpreted under assumptions of anisotropic rock properties near the borehole. The events can be consistently identified as shear sources, although their moment tensors comprise tensile components that are considered to be apparent. These results emphasise the necessity to consider anisotropy to uniquely determine tensile source parameters. Therefore, a new inversion algorithm has been developed, tested, and successfully applied to 112 earthquakes that occurred during the most recent intense swarm episode in West Bohemia in 2000 at the German-Czech border. Their source mechanisms have been retrieved using isotropic and anisotropic velocity models. Determined local magnitudes are in the range between 1.6 and 3.2. Fault-plane solutions are similar to each other and characterised by left-lateral faulting on steeply dipping, roughly North-South oriented rupture planes. Their dip angles decrease above a depth of about 8.4km. Tensile source components indicating positive volume changes are found for more than 60% of the considered earthquakes. Their size depends on source time and location. They are significant at the beginning of the swarm and at depths below 8.4km but they decrease in importance later in the course of the swarm. Determined principle stress axes include P axes striking Northeast and Taxes striking Southeast. They resemble those found earlier in Central Europe. However, depth-dependence in plunge is observed. Plunge angles of the P axes decrease gradually from 50° towards shallow angles with increasing depth. In contrast, the plunge angles of the T axes change rapidly from about 8° above a depth of 8.4km to 21° below this depth. By this thesis, spatial and temporal variations in tensile source components and stress conditions have been reported for the first time for swarm earthquakes in West Bohemia in 2000. They also persist, when anisotropy is assumed and can be explained by intrusion of fluids into the opened cracks during tensile faulting. N2 - Erdbeben entstehen durch plötzlichen Sprödbruch des Gesteins, meist als Scherbruch entlang einer Bruchfläche. Daneben werden für einige Beben v.a. in vulkanischen Gebieten auch Mechanismen beobachtet, die scheinbar vom Modell des Scherbruches abweichen. Ursachen dafür beinhalten komplexe Bruchgeometrien und tensile Erdbeben. Bei tensilen Erdbeben kommt es während des Bruchs zum Öffnen oder Schließen der Bruchfläche und damit zu Volumenänderungen. Erdbeben mit tensilen Anteilen stehen wahrscheinlich oft im Zusammenhang mit Fluiden, welche zur Durckänderung im Porenraum von Gesteinen und damit zum Auslösen des Bebens führen. Sie wurden auch im Vogtland während eines Erdbebenschwarms im Jahr 1997 beobachtet. Die Beurteilung und sichere Bestimmung tensiler Anteile von Erdbeben sind Ziel und Gegenstand dieser Arbeit. Bei Standardverfahren zur Bestimmung von Erdbebenmechanismen werden isotrope Gesteinseigenschaften angenommen. Momententensoren beschreiben dabei Kräfte, die das abgestrahlte Wellenfeld erklären. Allerdings wird seismische Anisotropie, d.h. Richtungsabhängigkeit elastischer Eigenschaften, in der Erdkruste und im Mantel wie z.B. im Vogtland beobachtet. Anisotropie bewirkt im Vergleich zu isotropen Medien Veränderungen der Wellenamplituden und -polariserungen sowie das Aufspalten von Scherwellen. In der vorliegenden Arbeit werden daher der Einfluss seismischer Anisotropie auf wahre oder scheinbar auftretende tensile Quellanteile untersucht und Erdbebenmechanismen unter Berücksichtigung seismischer Anisotropie bestimmt. Es wird gezeigt, dass Momententensoren und Abstrahlmuster von Scherbrüchen in anisotropen Medien denen von tensilen Brüchen in isotropen Medien ähneln können. Umgekehrt treten Ähnlichkeiten tensiler Beben in anisotropen Gesteinen mit Scherbrüchen in isotropen Medien auf. Damit existieren Mehrdeutigkeiten beobachteter tensiler Quellanteile. Die Effekte von Anisotropie hängen von der Orientierung des Bruches und vom Grad der Anisotropie ab. Außerdem beeinflusst Anisotropie das Moment eines Bebens. Herdflächenorientierungen können auch dann verlässlich bestimmt werden, wenn man Isotropie statt Anisotropie annimmt und die Spektren von Kompressionswellen verwendet. Bei Hinzunahme der Spektren von Scherwellen können Uneindeutigkeiten auftreten. Abgeleitete Momententensoren zeigen systematische Artefakte. Beobachtungen tensiler Quellanteile von Beben im Vogtland im Jahr 1997 können nicht allein durch moderate Anisotropie erklärt werden. Weiterhin wurden früher bestimmte Momententensoren induzierter Beben nahe der Kontinentalen Tiefbohrung, Bayern, unter Annahme anisotroper Parameter reinterpretiert. Die Beben werden einheitlich als Scherbrüche charakterisiert, obwohl deren Momententensoren tensile Bestandteile enthalten, die als scheinbar angesehen werden. Die Resultate unterstreichen die Notwendigkeit, seismische Anisotropie zu berücksichtigen, um tensile Komponenten von Erdbeben eindeutig zu bestimmen. Ein daher neu entwickelter Inversionsalgorithmus wurde getestet und erfolgreich auf 112 Erdbeben der letzten intensiven Schwarmepisode im Jahr 2000 im Vogtland an der deutsch-tschechischen Grenze angewandt. Die Herdparameter wurden unter Verwendung isotroper und anisotroper Geschwindigkeitsmodelle ermittelt. Die Beben zeigen Lokalmagnituden zwischen 1,6 und 3,2. Sie weisen zueinander ähnliche Herdflächenlösungen mit linkslateralem Versatz auf steil einfallenden, etwa Nord-Süd orientierten Bruchflächen auf. Die Fallwinkel nehmen oberhalb 8,4km Tiefe ab. Für über 60% der betrachteten Erdbeben werden tensile Quellanteile mit Volumenvergrößerung beobachtet. Die tensilen Komponenten zeigen Abhängigkeiten von Herdzeit und -ort. Sie sind zu Beginn des Schwarms sowie in Tiefen unterhalb 8,4km besonders signifikant und nehmen später an Bedeutung ab. Abgeleitete Hauptspannungsachsen enthalten P Achsen mit nordwestlicher und T Achsen mit südwestlicher Streichrichtung. Sie ähneln denen in Mitteleuropa. Es werden tiefenabhängige Fallwinkel beobachtet. Die Änderungen erfolgen für die P Achsen graduell von 50° hin zu flacheren Fallwinkeln bei tieferen Beben. Sie erfolgen jedoch abrupt für die T Achsen von etwa 8° oberhalb einer Tiefe von etwa 8,4km zu 21° einfallend unterhalb dessen. Mit dieser Arbeit werden erstmals zeitliche und räumliche Veränderungen tensiler Quellanteile und Spannungszustände im Vogtland für Erdbeben im Jahr 2000 beobachtet. Diese haben auch dann Bestand, wenn seismische Anisotropie berücksichtigt wird. Sie können durch Fluide erklärt werden, die in die Bruchflächen eindringen. KW - Seismologie KW - Momententensor KW - Anisotropie KW - Erdbeben KW - Wellenausbreitung KW - Vogtland KW - Schwarmbeben KW - tensile Anteile KW - Hauptspannungsachse KW - earthquake swarm KW - anisotropy KW - tensile earthquakes KW - moment tensor KW - West Bohemia Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7758 ER - TY - THES A1 - Martin, Sebastian T1 - Subduction zone wave guides : deciphering slab structure using intraslab seismicity at the Chile-Peru subduction zone T1 - Wellenleiter in Subduktionszonen : Bestimmung der Struktur der Chile-Peru Subduktionszone mit Hilfe von intra-platten Seismizität N2 - Subduction zones are regions of intense earthquake activity up to great depth. Sources are located inside the subducting lithosphere and, as a consequence, seismic radiation from subduction zone earthquakes is strongly affected by the interior slab structure. The wave field of these intraslab events observed in the forearc region is profoundly influenced by a seismically slow layer atop the slab surface. This several kilometer thick low-velocity channel (wave guide) causes the entrapment of seismic energy producing strong guided wave phases that appear in P onsets in certain regions of the forearc. Observations at the Chile-Peru subduction zone presented here, as well as observations at several other circum-pacific subduction zones show such signals. Guided wave analysis contributes details of immense value regarding the processes near the slab surface, such as layering of subducted lithosphere, source locations of intraslab seismicity and most of all, range and manner of mineralogical phase transitions. Seismological data stem from intermediate depth events (depth range 70 km - 300 km) recorded in northern Chile near 21 Grad S during the collaborative research initiative " Deformation Processes in the Andes" (SFB 267). A subset of stations - all located within a slab-parallel transect close to 69 Grad W - show low-frequency first arrivals (2 Hz), sometimes followed by a second high-frequency phase. We employ 2-dimensional finite-difference simulations of complete P-SV wave propagation to explore the parameter space of subduction zone wave guides and explain the observations. Key processes underlying the guided wave propagation are studied: Two distinct mechanisms of decoupling of trapped energy from the wave guide are analyzed - a prerequisite to observe the phases at stations located at large distances from the wave guide (up to 100 km). Variations of guided wave effects perpendicular to the strike of the subduction zone are investigated, such as the influence of phases traveling in the fast slab. Further, the merits and limits of guided wave analysis are assessed. Frequency spectra of the guided wave onsets prove to be a robust quantity that captures guided wave characteristics at subduction zones including higher mode excitation. They facilitate the inference of wave guide structure and source positioning: The peak frequency of the guided wave fundamental mode is associated with a certain combination of layer width and velocity contrast. The excitation strength of the guided wave fundamental mode and higher modes is associated with source position and orientation relative to the low-velocity layer. The guided wave signals at the Chile-Peru subduction zone are caused by energy that leaks from the subduction zone wave guide. On the one hand, the bend shape of the slab allows for leakage at a depth of 100 km. On the other, equalization of velocities between the wave guide and the host rocks causes further energy leakage at the contact zone between continental and oceanic crust (70 km depth). Guided waves bearing information on deep slab structure can therefore be recorded at specific regions in the forearc. These regions are determined based on slab geometry, and their locations coincide with the observations. A number of strong constraints on the structure of the Chile-Peru slab are inferred: The deep wave guide for intraslab events is formed by a layer of 2 km average width that remains seismically slow (7 percent velocity reduction compared to surrounding mantle). This low-velocity layer at the top of the Chile-Peru slab is imaged from a depth of 100 km down to at least 160 km. Intermediate depth events causing the observed phases are located inside the layer or directly beneath it in the slab mantle. The layer is interpreted as partially eclogized lower oceanic crust persisting to depth beyond the volcanic arc. N2 - Subduktionszonen sind bis in große Tiefen von intensiver Erdbebentätigkeit geprägt. Die Erdbebenquellen befinden sich in der subduzierten Lithosphäre (Slab), ihr Wellenfeld wird deshalb stark von der internen Slab-Struktur beeinflusst. Eine Schicht mit reduzierter seismischer Geschwindigkeit im oberen Bereich der Platte kann als Wellenleiter für diese Signale fungieren. In der nur wenige Kilometer dicken Schicht entstehen sogenannte geführte Wellen, die in Teilen des Forearc beobachtet werden. Diese Phasen bergen wertvolle Informationen über die Struktur nahe der Slab-Oberfläche, wie zum Beispiel Dicke der Schichtung, Herdlokationen und vor allem Tiefe und Art mineralogischer Umsetzungen. Die Beobachtungen stammen von mitteltiefen Beben (70 km - 300 km) im Untersuchungsgebiet in Nord-Chile und wurden im Rahmen des Sonderforschungsbereich 267 " Deformationsprozesse in den Anden" aufgezeichnet. Stationen in einem Streifen um 69 Grad W, der sich parallel zum Streichen der Subduktionszone erstreckt, zeigen niederfrequente Ersteinsätze, denen teilweise höherfrequente Phasen folgen. Mit Hilfe eines 2-dimensionalen Finite-Differenzen-Algorithmus werden die P-SV Wellenausbreitung simuliert, und die Beobachtungen erklärt. Zentrale Fragestellungen zu Wellenleitern in Subduktionszonen werden untersucht: Es werden zwei Mechanismen, die das Auskoppeln seismischer Energie aus dem Wellenleiter ermöglichen beschrieben - eine Grundvoraussetzung für das Auftreten von geführten Wellen in großen Entfernungen vom Wellenleiter (bis zu 100 km). Des weiteren werden Stärken und Grenzen der Analyse von geführten Wellen erörtert. Die Spektren der geführten Wellenzüge erweisen sich als robuste Messgröße, um die Charakteristika des Wellenleiters zu bestimmt. Struktur des Wellenleiters und Quellpositionen können so für festgelegte Quell-Empfänger-Geometrien abgeleitet werden. Die Peak-Frequenz der Grundmode wird durch eine Kombination aus Dicke der Schicht und Geschwindigkeitskontrast bestimmt. Die Stärke der Anregung der Grundmode und höherer Moden lässt auf die Lage und Orientierung der Erdbebenquelle relativ zur Schicht schließen. Geschwindigkeitskontrast, Schichtdicke und Quellposition sind von herausragender Bedeutung, um mineralogische Interpretationen des Wellenleiters zu überprüfen. Aufbauend auf die Simulationen werden die Beobachtungen interpretiert und Auskunft über die Struktur der Chile-Peru Subduktionszone erhalten: Eine dünne Schicht an der Slab-Oberfläche (durchschnittlich 2 km dick) trägt geringere seismische Geschwindigkeiten als der umgebende Mantel und fungiert als Wellenleiter für intra-platten Ereignisse in Tiefen von 100 bis mindestens 160 km. Ereignisse, die geführte Wellen hervorrufen, liegen in dieser Schicht oder direkt darunter im subduzierten Mantel. Um zu den Stationen in der Forearc-Region zu gelangen, entkoppelt ein Teil der geführten Wellen in einer Tiefe von circa 100 km aus der Niedergeschwindigkeitsschicht. Die Krümmung des Slab erlaubt das Austreten der Wellen und nimmt auch Einfluss auf die Pulsformen. Der Wellenleiter in der Chile-Peru Subduktionszone ergibt sich als unregelmäßige Schicht mit reduzierter seismischer Geschwindigkeit, in der geführte Wellen entstehen, in unterschiedlichen Tiefen wieder austreten, und an die freie Oberfläche gelangen. Die Beobachtungsgebiete befinden sich im Forearc und werden durch die Geometrie und Struktur der subduzierten Platte festgelegt. Die nur wenige Kilometer dicke, seismisch langsame Schicht an der Oberfläche des Chile-Peru Slab legt nahe, dass die Unterkruste der subduzierten Platte bis in große Tiefen besteht und nicht vollständig eklogitisiert ist. Abgeleitete Schichtdicke, Geschwindigkeitskontrast KW - Anden KW - Subduktion KW - Wellenleiter KW - Erdbeben KW - ozeanische Kruste KW - Gabbro-Eklogit KW - Transformation KW - geführte Wellen KW - subduction KW - guided waves KW - oceanic crust KW - Andes KW - finite difference simulation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5820 ER -