TY - GEN A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Reinecke, Antje A1 - Koetz, Joachim T1 - “Green” gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering N2 - The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 317 KW - morphological transformation KW - halide-ions KW - nanoparticles KW - shape KW - size KW - nanoprisms KW - vesicles KW - nanorods KW - silver KW - poly(ethyleneimine) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394430 SP - 33561 EP - 33568 ER - TY - JOUR A1 - Guiet, Amandine A1 - Unmüssig, Tobias A1 - Göbel, Caren A1 - Vainio, Ulla A1 - Wollgarten, Markus A1 - Driess, Matthias A1 - Schlaad, Helmut A1 - Polte, Jörg A1 - Fischer, Anna T1 - Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications JF - Earth & planetary science letters KW - AgAu alloy nanoparticles KW - tin-rich ITO KW - yolk@shell materials KW - nanoreactor KW - soft-templating KW - inverse micelles KW - polystyrene-block-poly(4-vinylpyridine) Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b06595 SN - 1944-8244 VL - 8 SP - 28019 EP - 28029 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Y-aromaticity - existing: yes or no? An answer given on the magnetic criterion (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties (Through Space NMR Shieldings - TSNMRS) of a number of Y-shaped structures possessing 4n+2 pi-electrons (i.a. the trimethylenemethane ions TMM2+, TMM2-, the guanidinium cation, substituted and hetero analogues) have been computed, visualized as Isochemical Shielding Surfaces (ICSS) of various size and direction, were examined subject to present Y-aromaticity and the results compared with energetic and geometric criteria obtained already. (C) 2016 Elsevier Ltd. All rights reserved. KW - Y-aromaticity KW - pi-Electron delocalization KW - Theoretical calculations KW - ICSS KW - TSNMRS Y1 - 2016 U6 - https://doi.org/10.1016/j.tet.2016.02.020 SN - 0040-4020 VL - 72 SP - 1675 EP - 1685 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 264 KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97087 ER - TY - JOUR A1 - Meiling, Till T. A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (> 1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Khadem, S. M. J. A1 - Hille, Carsten A1 - Löhmannsröben, Hans-Gerd A1 - Sokolov, Igor M. T1 - What information is contained in the fluorescence correlation spectroscopy curves, and where JF - Physical review : E, Statistical, nonlinear and soft matter physics Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.94.022407 SN - 2470-0045 SN - 2470-0053 VL - 94 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Hiltl, Stephanie A1 - Böker, Alexander T1 - Wetting Phenomena on (Gradient) Wrinkle Substrates JF - Langmuir N2 - We characterize the wetting behavior of nano structured wrinkle and gradient wrinkle substrates. Different contact angles on both sides of a water droplet after deposition on a gradient sample induce the self-propelled motion of the liquid toward smaller wrinkle dimensions. The droplet motion is self-limited by the contact angles balancing out. Because of the correlation between droplet motion and contact angles, we investigate the wetting behavior of wrinkle substrates with constant dimensions (wavelengths of 400-1200 nm). Contact angles of water droplets on those substrates increase with increasing dimensions of the underlying substrate. The results are independent of the two measurement directions, parallel and perpendicular to the longitudinal axis of the nanostructure. The presented findings may be considered for designing microfluidic or related devices and initiate ideas for the development of further wrinkle applications. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b02364 SN - 0743-7463 VL - 32 SP - 8882 EP - 8888 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schmidt, Burkhard A1 - Lorenz, Ulf T1 - WavePacket BT - a Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations JF - Computer physics communications : an international journal devoted to computational physics and computer programs in physics N2 - WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville–von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born–Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics ‘on the fly’, including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found. KW - Schrodinger equation KW - Quantum dynamics KW - Numerical propagation KW - Bound states KW - Discrete variable representation KW - Non-adiabatic transitions Y1 - 0207 U6 - https://doi.org/10.1016/j.cpc.2016.12.007 SN - 0010-4655 SN - 1879-2944 VL - 213 SP - 223 EP - 234 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - von Reppert, Alexander A1 - Sarhan, Radwan Mohamed A1 - Stete, Felix A1 - Pudell, Jan-Etienne A1 - Del Fatti, N. A1 - Crut, A. A1 - Koetz, Joachim A1 - Liebig, Ferenc A1 - Prietzel, Claudia Christina A1 - Bargheer, Matias T1 - Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b11651 SN - 1932-7447 VL - 120 SP - 28894 EP - 28899 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles JF - Dalton transactions : an international journal of inorganic chemistry N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. Y1 - 2016 U6 - https://doi.org/10.1039/C6DT00225K SN - 1477-9226 IS - 45 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. Y1 - 2016 U6 - https://doi.org/10.1039/c6dt00225k SN - 1477-9226 SN - 1477-9234 VL - 45 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Klier, Dennis Tobias T1 - Upconversion luminescence in Er-codoped NaYF4 nanoparticles T1 - Frequenzaufkonversion in Er-codotierten NaYF4 Nanopartikeln BT - fundamental photophysics and optimization for life science applications BT - fundamentale Photophysik und Optimierung für Anwendungen in den Lebenswissenschaften N2 - In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature. N2 - Ziel der Arbeit war es ein erweitertes Verständnis des Mechanismus der Lichtaufkonversion, sowie dessen gezielte Manipulation in verschiedenen Nanomaterialien auf Natriumyttrium-fluoridbasis zu erlangen. Die optischen Eigenschaften werden dabei durch eine gezielte Zusammenstellung verschiedener Lanthanoidionen hervorgerufen, welche während der Synthese in die Materialien eingebracht werden. Der Fokus lag hierbei in der Aufklärung des Zusammenspiels zwischen der Struktur der Materialien und deren Lichtaufkonver-sionsvermögen sowie dem Erlangen eines generellen Verständnisses der einzelnen Teilschritte des Lichtaufkonversionsmechanismus. Dabei wird das Licht, welches nach Anregung der Lanthanoidionen durch einen Laser von diesen emittiert wird, hinsichtlich der Farbzusammensetzung und des Abklingverhaltens der Lumineszenz untersucht. Diese Erkenntnisse geben sowohl einen Einblick in die verschiedenen Teilschritte des Lichtaufkonversionsmechanismus, als auch deren Korrelation zur Struktur der Nanomaterialien. Während der Arbeit wurde ein variabler Messplatz mit einer wellenlängendurchstimmbaren Anregungslichtquelle, einer Detektionseinheit mit hervorragender spektraler und zeitlicher Auflösung für die Messung des emittierten Lichtes sowie einer Temperiereinheit, mit der die Proben in einem Temperaturbereich von 4 Kelvin (-269,15 °C) bis 328 Kelvin (50 °C) temperiert werden können, aufgebaut. Die Proben wurden mithilfe der modernen Kopräzipitations- und Hydrothermalsynthese in verschiedenen Zusammensetzungen und Oberflächenmodifizierungen hergestellt, um sowohl Partikel für fundamentale Untersuchungen der Lichtaufkonversion verfügbar zu haben, als auch den hohen Anforderungen für Anwendungen in den Lebenswissenschaften gerecht zu werden. Die Reaktion fand bei hohen Temperaturen (160 °C bis 320 °C) unter Schutzgasatmosphäre statt und gewährleistete so die Bildung von hochkristallinen Partikeln, deren Größe stark mit der Synthesetemperatur korreliert. Mithilfe von zeitaufgelösten Lumineszenzuntersuchungen gelang ein sehr detaillierter Einblick in strukturelle Veränderungen der Nanopartikeln, welche durch klassische strukturanalytische Methoden, wie der Röntgenpulverdiffraktometrie, nicht in dem Maße möglich sind. Zudem konnte ein erheblicher Teil dazu beigetragen werden, das komplexe Zusammenspiel von Energietransportmechanismen, Gitterschwingungen und thermisch induzierten Prozessen zu verstehen. Zuletzt wurden, basierend auf der Vielzahl an gewonnenen Erkenntnissen, speziell designte Nanopartikel hergestellt. Die Farbe des Emissionslichts dieser Partikel wies dabei eine hohe Abhängigkeit von der Umgebungstemperatur auf. Auftretende Herausforderungen induziert durch das verwendete Anregungslicht im Nahinfrarotenbereich, wie das Aufheizen oder die zu hohe Absorption der Probe, wurden durch die Erweiterung des Aufkonversionssystems gelöst. Damit konnten beste Voraussetzungen für potentielle Anwendungen, wie zum Beispiel als Nanothermometer geschaffen werden. KW - Nanopartikel KW - nanoparticle KW - Frequenzaufkonversion KW - upconversion KW - Lanthanoide KW - lanthanides Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98486 ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Razzaq, Muhammad Yasar A1 - Lendlein, Andreas T1 - Ultrasonic Cavitation Induced Shape-Memory Effect in Porous Polymer Networks JF - Macromolecular rapid communications N2 - Inspired by the application of ultrasonic cavitation based mechanical force (CMF) to open small channels in natural soft materials (skin or tissue), it is explored whether an artificial polymer network can be created, in which shape-changes can be induced by CMF. This concept comprises an interconnected macroporous rhodium-phosphine (Rh-P) coordination polymer network, in which a CMF can reversibly dissociate the Rh-P microphases. In this way, the ligand exchange of Rh-P coordination bonds in the polymer network is accelerated, resulting in a topological rearrangement of molecular switches. This rearrangement of molecular switches enables the polymer network to release internal tension under ultrasound exposure, resulting in a CMF-induced shape-memory capability. The interconnected macroporous structure with thin pore walls is essential for allowing the CMF to effectively permeate throughout the polymer network. Potential applications of this CMF-induced shape-memory polymer can be mechanosensors or ultrasound controlled switches. Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600439 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1897 EP - 1903 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Hildebrand, Viet T1 - Twofold switchable block copolymers based on new polyzwitterions T1 - Neue Polyzwitterionbasierte Blockcopolymere mit „Schizophrenem Verhalten“ N2 - In complement to the well-established zwitterionic monomers 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (“SPE”) and 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate (“SPP”), the closely related sulfobetaine monomers were synthesized and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar mass were characterized with respect to their solubility in water, deuterated water, and aqueous salt solutions. These poly(sulfobetaine)s show thermoresponsive behavior in water, exhibiting upper critical solution temperatures (UCST). Phase transition temperatures depend notably on the molar mass and polymer concentration, and are much higher in D2O than in H2O. Also, the phase transition temperatures are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed structure of the zwitterionic side chain, on the other hand. For the polymers with the same zwitterionic side chain, it is found that methacrylamide-based poly(sulfobetaine)s exhibit higher UCST-type transition temperatures than their methacrylate analogs. The extension of the distance between polymerizable unit and zwitterionic groups from 2 to 3 methylene units decreases the UCST-type transition temperatures. Poly(sulfobetaine)s derived from aliphatic esters show higher UCST-type transition temperatures than their analogs featuring cyclic ammonium cations. The UCST-type transition temperatures increase markedly with spacer length separating the cationic and anionic moieties from 3 to 4 methylene units. Thus, apparently small variations of their chemical structure strongly affect the phase behavior of the polyzwitterions in specific aqueous environments. Water-soluble block copolymers were prepared from the zwitterionic monomers and the non-ionic monomer N-isopropylmethacrylamide (“NIPMAM”) by the RAFT polymerization. Such block copolymers with two hydrophilic blocks exhibit twofold thermoresponsive behavior in water. The poly(sulfobetaine) block shows an UCST, whereas the poly(NIPMAM) block exhibits a lower critical solution temperature (LCST). This constellation induces a structure inversion of the solvophobic aggregate, called “schizophrenic micelle”. Depending on the relative positions of the two different phase transitions, the block copolymer passes through a molecularly dissolved or an insoluble intermediate regime, which can be modulated by the polymer concentration or by the addition of salt. Whereas, at low temperature, the poly(sulfobetaine) block forms polar aggregates that are kept in solution by the poly(NIPMAM) block, at high temperature, the poly(NIPMAM) block forms hydrophobic aggregates that are kept in solution by the poly(sulfobetaine) block. Thus, aggregates can be prepared in water, which switch reversibly their “inside” to the “outside”, and vice versa. N2 - Diese Arbeit befasst sich mit der Synthese und Charakterisierung von doppelt thermisch-responsiven Blockcopolymeren mit einem polaren nicht-ionischen Block (der einen LCST-Übergang in wässriger Lösung induziert) und einem zwitterionischen Block (der einen UCST-Übergang aufweisen soll), der durch Salzzusatz über einen weiten Temperaturbereich modulierbar ist. Dafür wurden geeignete zwitterionische Polymer¬blöcke identifiziert und hergestellt, die ein derartiges Löslichkeitsprofil aufweisen. Da bislang nur relativ wenige Poly-sulfobetaine beschrieben sind und entsprechend das wässrige Phasenverhalten nur für einzelne ausgewählte Polymere bekannt ist, wurde ein Grundverständnis von chemischer Struktur und Phasen¬übergangs¬verhalten durch eine systematische Variation des Substitutionsmusters angestrebt. Die als geeignet erkannten Sulfobetain-Monomere wurden mit dem nicht-ionischen Monomer N-Isopropyl-methacrylamid („NIPMAM“) zu Blockcopolymeren von unterschiedlicher Größe und Blocklängen zusammengefügt. Die neuen Blockcopolymere wurden anschließend bezüglich der Lage der Phasenübergänge mit Trübheitsmessungen untersucht. Es wurden 2 Serien neuer zwitterionischer Monomere synthetisiert, deren Struktur den sehr gut untersuchten 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate („SPE“) und 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate („SPP“) ähnlich ist. Aus den Monomeren wurden fluoreszenz-markierte Homopolymere mit unterschiedlichen Molmassen mittels der Reversiblen Additions-Fragmentierungs Kettenübertragungs (RAFT) – Polymerisation unter Verwendung eines geeigneten RAFT Reagenzes synthetisiert. Die Poly¬sulfobetaine wurden bezüglich ihrer Löslichkeit in Wasser, in deuteriertem Wasser und in Salzlösungen untersucht. Ihr wässriges Phasenverhalten mit einem UCST-Übergang ist stark abhängig von ihrer Molmasse und von der Polymerkonzentration der untersuchten Lösung. Auffällig ist, dass die Phasenübergangstemperatur in D2O deutlich höher liegt als in H2O. Des Weiteren konnten die Löslichkeit und Phasen-übergangstemperatur durch Salzzusatz effektiv moduliert werden. Prinzipiell stellte sich bei den untersuchten Anionen heraus, dass das Einsalzen bzw. das Aussalzen der empirischen Hofmeister Serie folgt. Dabei hängen die individuellen Effekte sehr stark von der Konzentration und von der Art des Salzes, aber auch in nicht-trivialer Weise von der detaillierten zwitterionischen Struktur stark ab. Durch die systematische Variation der Monomerstruktur wurden interessante Tendenzen offenbar. Die Methacrylamid-basierte Polysulfobetaine besitzen eine höhere Phasenübergangstemperatur als ihre Methacrylat-basierten Analoga. Die Vergrößerung der Distanz zwischen Polymerrückrat und der zwitterionischen Gruppe von 2 auf 3 Methylengruppen führt zu einer Erniedrigung der Phasenübergangstemperatur. Polysulfobetaine mit aliphatischen Resten (Methyl-gruppen) am Ammonium-Ion haben eine höhere Phasenübergangstemperatur als ihre Analoga, in denen der Ammonium-Stickstoff Teil eines Heterozyklus ist. Als letzte Strukturvariable wurde die Distanz zwischen Kation und Anion von 3 auf 4 Methylengruppen vergrößert; diese Änderung führt zu einer massiven Erhöhung der Phasenübergangstemperatur. Die Polysulfobetaine wurden verwendet, um mit dem nicht-ionischen Monomer NIPMAM wasserlösliche Blockcopolymere mittels der RAFT Polymerisation herzustellen. Diese Blockcopolymere besitzen doppelt thermisch-responsives Verhalten (mit einem UCST- und einem LCST-Übergang). Die Besonderheit einer solchen Konstellation ist, dass eine Strukturinversion der solvophoben Aggregate induziert werden kann. Daher werden solche Blockcopolymer-Assoziate auch als „schizophrene Mizellen“ bezeichnet. Je nach der relativen Lage der beiden Phasenübergänge, die sich durch Polymerkonzentration oder durch Salzzusatz einstellen lässt, läuft die Strukturinversion über ein molekular gelöstes oder über ein unlösliches Zwischenstadium ab. Der Polysulfobetain-Block bildet bei niedriger Temperatur Aggregate, die durch den gelösten poly(NIPMAM)-Block in Lösung gehalten werden. Dahingegen bildet der poly(NIPMAM)-Block bei hoher Temperatur Aggregate, welche ihrerseits durch den gelösten Polysulfobetain-Block in Lösung gehalten werden. Somit werden „schizophrene“ Aggregate in Wasser erzeugt, die fähig sind, reversibel ihr „Inneres“ nach „Außen“ und umgekehrt zu schalten durch Nutzen eines einfachen thermischen Impulses. KW - switchable block copolymer KW - polyzwitterion KW - polysulfobetaine KW - thermoresponsive polymers KW - schizophrenic behavior KW - LCST and UCST KW - electrolyte sensitivity KW - zweifach schaltbare Blockcopolymere KW - Polyzwitterion KW - Polysulfobetaine KW - thermoresponsive Polymere KW - schizophrenes Verhalten KW - LCST und UCST KW - Elektrolytempfindlichkeit Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101372 ER - TY - JOUR A1 - Wessig, Pablo A1 - Behrends, Nicole A1 - Kumke, Michael Uwe A1 - Eisold, Ursula A1 - Meiling, Til A1 - Hille, Carsten T1 - Two-photon FRET pairs based on coumarin and DBD dyes JF - RSC Advances N2 - The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM. Y1 - 2016 U6 - https://doi.org/10.1039/c6ra03983a SN - 2046-2069 VL - 6 SP - 33510 EP - 33513 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Wessig, Pablo A1 - Hille, Carsten A1 - Kumke, Michael Uwe A1 - Meiling, Till Thomas A1 - Behrends, Nicole A1 - Eisold, Ursula T1 - Two-photon FRET pairs based on coumarin and DBD dyes N2 - The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 318 KW - resonance energy-tansfer KW - conformational-changes KW - microscopy KW - proteins KW - acid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394445 SP - 33510 EP - 33513 ER - TY - JOUR A1 - Wentrup, Curt A1 - Koch, Rainer A1 - Kleinpeter, Erich T1 - Twisted C=C Double Bonds with Very Low Rotational Barriers in Dioxanediones and Isoxazolones Determined by Low-Temperature Dynamic NMR Spectroscopy and Computational Chemistry JF - European journal of organic chemistry KW - NMR spectroscopy KW - Twisted double bonds KW - Push-pull effect KW - Density functional calculations Y1 - 2016 U6 - https://doi.org/10.1002/ejoc.201600931 SN - 1434-193X SN - 1099-0690 SP - 4985 EP - 4990 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Koshkina, Olga A1 - Westmeier, Dana A1 - Lang, Thomas A1 - Bantz, Christoph A1 - Hahlbrock, Angelina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Thiermann, Raphael A1 - Weise, Christoph A1 - Eravci, Murat A1 - Mohr, Benjamin A1 - Schlaad, Helmut A1 - Stauber, Roland H. A1 - Docter, Dominic A1 - Bertin, Annabelle A1 - Maskos, Michael T1 - Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake JF - Macromolecular bioscience N2 - Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles. KW - cellular uptake KW - nanoparticles KW - poly(2-ethyl-2oxazoline) KW - poly(ethylene glycol) KW - protein adsorption Y1 - 2016 U6 - https://doi.org/10.1002/mabi.201600074 SN - 1616-5187 SN - 1616-5195 VL - 16 SP - 1287 EP - 1300 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Pietraszkiewicz, Marek A1 - Maciejczyk, Michal A1 - Gorski, Krzysztof A1 - Hammann, Tommy A1 - Liermann, Konstanze A1 - Paulke, Bernd-Reiner A1 - Löhmannsröben, Hans-Gerd T1 - Total protein concentration quantification using nanobeads with a new highly luminescent terbium(III) complex JF - RSC Advances N2 - Total protein concentration (TPC) is a key parameter in many biochemical experiments and its quantification is often necessary for isolation, separation, and analysis of proteins. A sensitive and rapid nanobead-based TPC quantification assay based on Forster Resonance Energy Transfer (FRET) has been developed. A new, highly luminescent Tb(III) complex has been synthesised and applied as donor in this FRET assay with an organic dye (Cy5) as acceptor. FRET-induced changes in luminescence have been investigated both at donor and acceptor emission wavelength using time-resolved luminescence spectroscopy with time-gated detection. In the assay, the Tb(III) complex and fine-tuned polyglycidyl methacrylate (PGMA) nanobeads ensure that an improvement in sensitivity and background reduction is achieved. Using 40 nm large PGMA nanobeads loaded with the Tb(III) complex, it is possible to determine TPC down to 50 ng mL(-1) in just 10 minutes. Through specific assay components the sensitivity has been improved when compared to existing nanobead-based assays and to currently known commercial methods. Additionally, the assay is relatively insensitive to the presence of contaminants, such as non-ionic detergents commonly found in biological samples. Due to no need for any centrifugal steps, this mix-and-measure bioassay can easily be implemented into routine TPC quantification protocols in biochemical laboratories. Y1 - 2016 U6 - https://doi.org/10.1039/c6ra23207h SN - 2046-2069 VL - 6 SP - 115068 EP - 115073 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Couturier, Jean-Philippe A1 - Wischerhoff, Erik A1 - Bernin, Robert A1 - Hettrich, Cornelia A1 - Koetz, Joachim A1 - Sutterlin, Martin A1 - Tiersch, Brigitte A1 - Laschewsky, Andre T1 - Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols JF - Langmuir N2 - Responsive inverse opal hydrogels functionalized by boroxole moieties were synthesized and explored as sensor platforms for various low molar mass as well as polymeric diols and polyols, including saccharides, glycopolymers and catechols, by exploiting the diol induced modulation of their structural color. The underlying thermoresponsive water-soluble copolymers and hydrogels exhibit a coil-to-globule or volume phase transition, respectively, of the LCST-type. They were prepared from oligoethylene oxide methacrylate (macro)monomers and functionalized via copolymerization to bear benzoboroxole moieties. The resulting copolymers represent weak polyacids, which can bind specifically to diols within an appropriate pH window. Due to the resulting modulation of the overall hydrophilicity of the systems and the consequent shift of their phase transition temperature, the usefulness of such systems for indicating the presence of catechols, saccharides, and glycopolymers was studied, exploiting the diol/polyol induced shifts of the soluble polymers’ cloud point, or the induced changes of the hydrogels’ swelling. In particular, the increased acidity of benzoboroxoles compared to standard phenylboronic acids allowed performing the studies in PBS buffer (phosphate buffered saline) at the physiologically relevant pH of 7.4. The inverse opals constructed of these thermo- and analyte-responsive hydrogels enabled following the binding of specific diols by the induced shift of the optical stop band. Their highly porous structure enabled the facile and specific optical detection of not only low molar mass but also of high molar mass diol/polyol analytes such as glycopolymers. Accordingly, such thermoresponsive inverse opal systems functionalized with recognition units represent attractive and promising platforms for the facile sensing of even rather big analytes by simple optical means, or even by the bare eye. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b00803 SN - 0743-7463 VL - 32 SP - 4333 EP - 4345 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Hoogenboom, Richard A1 - Schlaad, Helmut T1 - Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides N2 - This review covers the recent advances in the emerging field of thermoresponsive polyamides or polymeric amides, i.e., poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure–thermoresponsive property relationships, self-assembly, and applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 328 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395022 ER - TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Barwe, Stefan A1 - Nebel, Michaela A1 - Alburquerque, Natalia Guerrero A1 - Wischerhoff, Erik A1 - Laschewsky, Andre A1 - Schmaderer, Sebastian A1 - Szeponik, Jan A1 - Plumere, Nicolas A1 - Schuhmann, Wolfgang T1 - Thermoresponsive amperometric glucose biosensor JF - Biointerphases N2 - The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(omega-ethoxytriethylenglycol methacrylate-omega-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-omega-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 degrees C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol) methacrylate-co-butyl acrylate-co-2-(dimethylamino) ethyl methacrylate)-[Os(bpy)(2)(4-(((2-(2-(2-aminoethoxy) ethoxy) ethyl) amino) methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on-to an off-state without heating of the surrounding analyte solution. (C) 2015 American Vacuum Society. Y1 - 2016 U6 - https://doi.org/10.1116/1.4938382 SN - 1934-8630 SN - 1559-4106 VL - 11 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Herfurth, Christoph A1 - Laschewsky, Andre A1 - Noirez, Laurence A1 - von Lospichl, Benjamin A1 - Gradzielski, Michael T1 - Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution JF - Polymer : the international journal for the science and technology of polymers N2 - A series of hydrophobically end-capped linear triblock copolymers as well as of three-arm and four-arm star block copolymers was synthesized in a one-pot procedure from N,N-dimethylacrylamide (DMA) and N, N-diethylacrylamide (DEA). The sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of these monomers via the R-approach using bi-, tri- and tetrafunctional chain transfer agents (CrAs) bearing hydrophobic dodecyl moieties proceeded in a well-controlled manner up to almost quantitative conversion. Polymers with molar masses up to 150 kDa, narrow molar mass distribution (PDI <= 1.3) and high end group functionality were obtained, which are thermoresponsive in aqueous solution showing a LCST (lower critical solution temperature) transition. The temperature-dependent associative behavior of the polymers was examined using turbidimetry, static and dynamic light scattering (SLS, DLS), and small angle neutron scattering (SANS) for structural analysis. At 25 degrees C, the polymers form weak transient networks, and rather small hydrophobic domains are already present for polymer concentrations of 5 wt%. However, when heating above the LCST transition (35-40 degrees C) of the PDEA blocks, the enhanced formation of hydrophobic domains is observed by means of light and neutron scattering. These domains have a size of about 12-15 nm and must be effectively physically cross-linked as they induce high viscosity for the more concentrated samples. SANS shows that these domains are ordered as evidenced by the appearance of a correlation peak. The copolymer architecture affects in particular the extent of ordering as the four-arm star block copolymer shows much more repulsive interactions compared to the analogous copolymers with a lower number of arms. (C) 2016 Elsevier Ltd. All rights reserved. KW - RAFT polymerization KW - Block copolymers KW - Thermosensitivity KW - LCST KW - SANS KW - Light scattering Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.09.089 SN - 0032-3861 SN - 1873-2291 VL - 107 SP - 422 EP - 433 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Secker, Christian A1 - Voelkel, Antje A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Schlaad, Helmut T1 - Thermo-Induced Aggregation and Crystallization of Block Copolypeptoids in Water JF - Macromolecules : a publication of the American Chemical Society N2 - Block copolypeptoids comprising a thermosensitive, crystallizable poly(N-(n-propyl)glycine) block and a watersoluble poly(N-methylglycine) block, P70My (y = 23, 42, 76, 153, and 290), were synthesized bY ring-opening polymerization of the corresponding N-alkylglycine N-carboxyanhydrides (NCAs) and examined according to their thermo-induced aggregation and crystallization in water by turbidimetty, micro-differential scanning calorimetry (micro-DSC); cryogenic scanning electron microscopy (cryo-SEM), analytical ultracentrifugation (AUC), and static light scattering (SLS). At a temperature above the cloud point temperature, the initially formed micellar aggregates started to crystallize and grow into larger complex assemblies of about 100-500 nm, exhibiting flower-like (P70M23), ellipsoidal (P70M42 and P70M72) or irregular shapes (P70M153 and.P70M290). Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.5b02481 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 979 EP - 985 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - The relevance of hydrophobic segments in multiblock copolyesterurethanes for their enzymatic degradation at the air-water interface JF - Polymer : the international journal for the science and technology of polymers N2 - The interplay of an enzyme with a multiblock copolymer PDLCL containing two segments of different hydrophilicity and degradability is explored in thin films at the air-water interface. The enzymatic degradation was studied in homogenous Langmuir monolayers, which are formed when containing more than 40 wt% oligo(epsilon-caprolactone) (OCL). Enzymatic degradation rates were significantly reduced with increasing content of hydrophobic oligo(omega-pentadecalactone) (OPDL). The apparent deceleration of the enzymatic process is caused by smaller portion of water-soluble degradation fragments formed from degradable OCL fragments. Beside the film degradation, a second competing process occurs after adding lipase from Pseudomonas cepacia into the subphase, namely the enrichment of the lipase molecules in the polymeric monolayer. The incorporation of the lipase into the Langmuir film is experimentally revealed by concurrent surface area enlargement and by Brewster angle microscopy (BAM). Aside from the ability to provide information about the degradation behavior of polymers, the Langmuir monolayer degradation (LMD) approach enables to investigate polymer-enzyme interactions for non-degradable polymers. (C) 2016 Elsevier Ltd. All rights reserved. KW - Multiblock copolymer KW - Enzymatic polymer degradation KW - Oligo(omega-pentadecalactone) KW - Oligo(epsilon-caprolactone) KW - Langmuir monolayer degradation technique Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.09.001 SN - 0032-3861 SN - 1873-2291 VL - 102 SP - 92 EP - 98 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Balci, K. A1 - Akkaya, Y. A1 - Akyuz, S. A1 - Collier, W. B. A1 - Stricker, M. C. A1 - Stover, D. D. A1 - Ritzhaupt, G. A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - The effects of conformation and zwitterionic tautomerism on the structural and vibrational spectral data of anserine JF - Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy N2 - In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved. KW - Anserine KW - Matrix IR spectrum KW - Tautomerism KW - SQM-FF KW - Dual scale factors Y1 - 2016 U6 - https://doi.org/10.1016/j.vibspec.2016.08.003 SN - 0924-2031 SN - 1873-3697 VL - 86 SP - 277 EP - 289 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zabel, André A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR JF - International journal of molecular sciences N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several “onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - https://doi.org/10.3390/ijms17040596 VL - 17 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - Zabel, André A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several “onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 226 KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91470 ER - TY - JOUR A1 - Zabel, Andre A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR JF - International journal of molecular sciences N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and g(perpendicular to)) of the tensors could be determined and information on the structural changes in the [CuBr4](2-) anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - https://doi.org/10.3390/ijms17040596 SN - 1422-0067 VL - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schmidt, Bernd A1 - Wolf, Felix A1 - Ehlert, Christopher T1 - Systematic Investigation into the Matsuda-Heck Reaction of alpha-Methylene Lactones: How Conformational Constraints Direct the beta-H-Elimination Step JF - The journal of organic chemistry N2 - alpha-Methylene-gamma-butyrolactone and alpha-methylene-gamma-valerolactone undergo Pd-catalyzed Matsuda-Heck couplings with arene diazonium salts to alpha-benzyl butenolides or pentenolides, respectively, or to alpha-benzylidene lactones. The observed regioselectivity is strongly ring size dependent, with six-membered rings giving exclusively alpha-benzyl pentenolides, whereas the five-membered alpha-methylene lactone reacts to mixtures of regioisomers with a high proportion of (E)-alpha-benzylidene-gamma-butyrolactones. DFT calculations suggest that the reasons for these differences are not thermodynamic but kinetic in nature. The relative energies of the conformers of the Pd sigma-complexes resulting from insertion into the Pd-aryl bond were correlated with the dihedral angles between Pd and endo-beta-H. This correlation revealed that in the case of the six-membered lactone an energetically favorable conformer adopts a nearly synperiplanar Pd/endo-beta-H arrangement, whereas for the analogous Pd sigma-complex of the five-membered lactone the smallest Pd/endo-beta-H dihedral angle is observed for a conformer with a comparatively high potential energy. The optimized conditions for Matsuda-Heck arylations of exo-methylene lactones were eventually applied to the synthesis of the natural product anemarcoumarin A. Y1 - 2016 U6 - https://doi.org/10.1021/acs.joc.6b02207 SN - 0022-3263 VL - 81 SP - 11235 EP - 11249 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Doriti, Afroditi A1 - Brosnan, Sarah M. A1 - Weidner, Steffen M. A1 - Schlaad, Helmut T1 - Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base N2 - Polysarcosine (Mn = 3650–20 000 g mol−1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 255 KW - acids KW - activated urethane derivatives KW - carboxyanhydrides KW - copolymers KW - phosgene-free synthesis KW - polypeptides KW - ring-opening polymerization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95852 SP - 3067 EP - 3070 ER - TY - JOUR A1 - Doriti, Afroditi A1 - Brosnan, Sarah M. A1 - Weidner, Steffen M. A1 - Schlaad, Helmut T1 - Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base JF - Polymer Chemistry N2 - Polysarcosine (M-n = 3650-20 000 g mol(-1), D similar to 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator. Y1 - 2016 U6 - https://doi.org/10.1039/c6py00221h SN - 1759-9954 SN - 1759-9962 VL - 7 SP - 3067 EP - 3070 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Doriti, Afroditi A1 - Brosnan, Sarah M. A1 - Weidner, Steffen M. A1 - Schlaad, Helmut T1 - Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base JF - Polymer Chemistry N2 - Polysarcosine (Mn = 3650–20 000 g mol−1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator. KW - ring-opening polymerization KW - activated urethane derivatives KW - phosgene-free synthesis KW - carboxyanhydrides KW - polypeptides KW - acids KW - copolymers Y1 - 2016 U6 - https://doi.org/10.1039/C6PY00221H SN - 1759-9954 SN - 1759-9962 VL - 7 SP - 3067 EP - 3070 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Wu, Lei A1 - Glebe, Ulrich A1 - Böker, Alexander T1 - Synthesis of Hybrid Silica Nanoparticles Densely Grafted with Thermo and pH Dual-Responsive Brushes via Surface-Initiated ATRP JF - Macromolecules : a publication of the American Chemical Society Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.6b01792 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 9586 EP - 9596 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schmidt, Bernd A1 - Riemer, Martin T1 - Synthesis of Allyl- and Prenylcoumarins via Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination JF - Synthesis N2 - Allyl, dimethylallyl, crotyl, and prenyl ethers of various aromatic ortho-hydroxy carbonyl compounds undergo a tandem sequence of Claisen rearrangement, carbonyl olefination, and cyclization upon microwave irradiation in the presence of a stabilized ylide. The products are multiply substituted 6- or 8-allylated or prenylated coumarins (2H-chromen-2-ones). KW - aldehydes KW - coumarins KW - ketones KW - microwave irradiation KW - olefination KW - tandem reaction KW - ylides Y1 - 2016 U6 - https://doi.org/10.1055/s-0035-1560501 SN - 0039-7881 SN - 1437-210X VL - 48 SP - 141 EP - 149 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Pavashe, Prashant A1 - Elamparuthi, Elangovan A1 - Hettrich, Cornelia A1 - Moeller, Heiko M. A1 - Linker, Torsten T1 - Synthesis of 2-Thiocarbohydrates and Their Binding to Concanavalin A JF - The journal of organic chemistry N2 - A convenient and general synthesis of 2-thiocarbohydrates via cerium ammonium nitrate oxidation of the thiocyanate ion is described. Radical addition to glycals proceeds with excellent regio- and good stereoselectivities in only one step, deprotection affords water-soluble 2-thio saccharides. Binding studies to Con A have been performed by isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR spectroscopy. The 2-thiomannose derivative binds even stronger to Con A than the natural substrate, offering opportunities for new lectin or enzyme inhibitors. Y1 - 2016 U6 - https://doi.org/10.1021/acs.joc.6b00987 SN - 0022-3263 VL - 81 SP - 8595 EP - 8603 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Barta, Petra A1 - Szatmari, Istvan A1 - Fueloep, Ferenc A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Synthesis and stereochemistry of new naphth[1,3]oxazino[3,2-a] benzazepine and naphth[1,3]oxazino[3,2-e]thienopyridine derivatives JF - Tetrahedron N2 - Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved. KW - Modified Mannich reaction KW - Thienopyridine KW - Benzazepine KW - NMR spectroscopy KW - Stereochemistry KW - Theoretical calculations Y1 - 2016 U6 - https://doi.org/10.1016/j.tet.2016.03.058 SN - 0040-4020 VL - 72 SP - 2402 EP - 2410 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wong, Joseph K. -H. A1 - Ast, Sandra A1 - Yu, Mingfeng A1 - Flehr, Roman A1 - Counsell, Andrew J. A1 - Turner, Peter A1 - Crisologo, Patrick A1 - Todd, Matthew H. A1 - Rutledge, Peter J. T1 - Synthesis and Evaluation of 1,8-Disubstituted-Cyclam/Naphthalimide Conjugates as Probes for Metal Ions JF - ChemistryOpen : including thesis treasury N2 - Fluorescent molecular probes for metal ions have a raft of potential applications in chemistry and biomedicine. We report the synthesis and photophysical characterisation of 1,8-disubstituted-cyclam/naphthalimide conjugates and their zinc complexes. An efficient synthesis of 1,8-bis-(2-azidoethyl)cyclam has been developed and used to prepare 1,8-disubstituted triazolyl-cyclam systems, in which the pendant group is connected to triazole C4. UV/Vis and fluorescence emission spectra, zinc binding experiments, fluorescence quantum yield and lifetime measurements and pH titrations of the resultant bis-naphthalimide ligand elucidate a complex pattern of photophysical behaviour. Important differences arise from the inclusion of two fluorophores in the one probe and from the variation of triazole substitution pattern (dye at C4 vs. N1). Introducing a second fluorophore greatly extends fluorescence lifetimes, whereas the altered substitution pattern at the cyclam amines exerts a major influence on fluorescence output and metal binding. Crystal structures of two key zinc complexes evidence variations in triazole coordination that mirror the solution-phase behaviour of these systems. KW - chromophores KW - click triazoles KW - fluorescent probes KW - macrocyclic compounds KW - photophysics Y1 - 2016 U6 - https://doi.org/10.1002/open.201600010 SN - 2191-1363 VL - 5 SP - 375 EP - 385 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dietrich, Paul M. A1 - Glamsch, Stephan A1 - Ehlert, Christopher A1 - Lippitz, Andreas A1 - Kulak, Nora A1 - Unger, Wolfgang E. S. T1 - Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z(95) of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) - inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchrotron radiation XPS KW - Depth profiling KW - Silanes KW - Monolayer KW - Amines KW - Amides Y1 - 2016 U6 - https://doi.org/10.1016/j.apsusc.2015.12.052 SN - 0169-4332 SN - 1873-5584 VL - 363 SP - 406 EP - 411 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sechi, Antonio A1 - Freitas, Joana M. G. A1 - Wünnemann, Patrick A1 - Töpel, Alexander A1 - Paschoalin, Rafaella Takehara A1 - Ullmann, Sabrina A1 - Schröder, Ricarda A1 - Aydin, Gülcan A1 - Rütten, Stephan A1 - Böker, Alexander A1 - Zenke, Martin A1 - Pich, Andrij T1 - Surface-Grafted Nanogel Arrays Direct Cell Adhesion and Motility JF - Advanced materials interfaces N2 - It has long been appreciated that material chemistry and topology profoundly affect cell adhesion and migration. Here, aqueous poly(N- isopropyl acrylamide) nanogels are designed, synthesized and printed in form of colloidal arrays on glass substrates using wrinkled polydimethylsiloxane templates. Using low-temperature plasma treatment, nanogels are chemically grafted onto glass supports thus leading to highly stable nanogel layers in cell culture media. Liquid cell atomic force microscopy investigations show that surface-grafted nanogels retain their swelling behavior in aqueous media and that extracellular matrix protein coating do not alter their stability and topography. It is demonstrated that surface-grafted nanogels could serve as novel substrates for the analysis of cell adhesion and migration. Nanogels influence size, speed, and dynamics of focal adhesions and cell motility forcing cells to move along highly directional trajectories. Moreover, modulation of nanogel state or spacing serves as an effective tool for regulation of cell motility. It is suggested that nanogel arrays deposited on solid surfaces could be used to provide a precise and tunable system to understand and control cell migration. Additionally, such nanogel arrays will contribute to the development of implantable systems aimed at supporting and enhancing cell migration during, for instance, wound healing and tissue regeneration. Y1 - 2016 U6 - https://doi.org/10.1002/admi.201600455 SN - 2196-7350 VL - 3 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Federico, Stefania A1 - Nöchel, Ulrich A1 - Löwenberg, Candy A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Supramolecular hydrogel networks formed by molecular recognition of collagen and a peptide grafted to hyaluronic acid JF - Acta biomaterialia N2 - The extracellular matrix (ECM) is a nano-structured, highly complex hydrogel, in which the macromolecules are organized primarily by non-covalent interactions. Here, in a biomimetic approach, the decorin-derived collagen-binding peptide LSELRLHNN was grafted to hyaluronic acid (HA) in order to enable the formation of a supramolecular hydrogel network together with collagen. The storage modulus of a mixture of collagen and HA was increased by more than one order of magnitude (G′ = 157 Pa) in the presence of the HA-grafted peptide compared to a mixture of collagen and HA (G′ = 6 Pa). The collagen fibril diameter was decreased, as quantified using electron microscopy, in the presence of the HA-grafted peptide. Here, the peptide mimicked the function of decorin by spatially organizing collagen. The advantage of this approach is that the non-covalent crosslinks between collagen molecules and the HA chains created by the peptide form a reversible and dynamic hydrogel, which could be employed for a diverse range of applications in regenerative medicine. Statement of Significance Biopolymers of the extracellular matrix (ECM) like collagen or hyaluronan are attractive starting materials for biomaterials. While in biomaterial science covalent crosslinking is often employed, in the native ECM, stabilization and macromolecular organization is primarily based on non-covalent interactions, which allows dynamic changes of the materials. Here, we show that collagen-binding peptides, derived from the small proteoglycan decorin, grafted to hyaluronic acid enable supramolecular stabilization of collagen hydrogels. These hydrogels have storage moduli more than one order of magnitude higher than mixtures of collagen and hyaluronic acid. Furthermore, the peptide supported the structural organization of collagen. Such hydrogels could be employed for a diverse range of applications in regenerative medicine. Furthermore, the rational design helps in the understanding ECM structuring. KW - Biopolymers KW - Collagen-binding peptide KW - Hyaluronic acid KW - Hydrogels KW - Mechanical properties Y1 - 2016 U6 - https://doi.org/10.1016/j.actbio.2016.04.018 SN - 1742-7061 SN - 1878-7568 VL - 38 SP - 1 EP - 10 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schmidt, Bernd A1 - Wolf, Felix A1 - Brunner, Heiko T1 - Styrylsulfonates and -Sulfonamides through Pd-Catalysed Matsuda-Heck Reactions of Vinylsulfonic Acid Derivatives and Arenediazonium Salts JF - European journal of organic chemistry N2 - Arene diazonium salts undergo Matsuda-Heck reactions with vinylsulfonates and -sulfonamides to give styrylsulfonic acid derivatives in high to excellent yields and with high to excellent selectivities. By quantifying the evolution of nitrogen over time in a gas-meter apparatus, the reactivities of ethylvinylsulfonate and the benchmark olefin methyl acrylate were compared for an electron-rich and an -deficient arene diazonium salt. Tertiary sulfonamides react in Matsuda-Heck couplings with high conversions, but require long reaction times, which prevents the determination of kinetic data through the measurement of nitrogen evolution. Secondary sulfonamides were found to be unreactive. From these results, the following order of reactivity could be deduced: H2C=CHCO2Me > H2C=CHSO2OEt > H2C=CHSO2N(Me)Bn >> H2C=CHSO2NHBn. Through the Matsuda-Heck coupling of 5-indolyldiazonium salt and a tertiary vinylsulfonamide, the synthesis of the C-5-substituted indole part of the antimigraine drug naratriptan was accomplished in high yield. KW - Homogeneous catalysis KW - Cross-coupling KW - Palladium KW - Sulfonamides KW - Alkenes KW - Drug design Y1 - 2016 U6 - https://doi.org/10.1002/ejoc.201600469 SN - 1434-193X SN - 1099-0690 SP - 2972 EP - 2982 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Attallah, Ahmed G. A1 - Matthes, Philipp R. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Müller-Buschbaum, Klaus A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides JF - Chemistry - a European journal N2 - An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions. KW - adsorption KW - cadmium KW - ionic liquids KW - luminescence KW - metal-organic frameworks Y1 - 2016 U6 - https://doi.org/10.1002/chem.201504757 SN - 0947-6539 SN - 1521-3765 VL - 22 SP - 6905 EP - 6913 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Friedl, Christian A1 - Renger, Thomas A1 - Berlepsch, Hans V. A1 - Ludwig, Kai A1 - Schmidt am Busch, Marcel A1 - Megow, Jörg T1 - Structure Prediction of Self-Assembled Dye Aggregates from Cryogenic Transmission Electron Microscopy, Molecular Mechanics, and Theory of Optical Spectra JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 A. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30 and the-transition dipole moments of the chromophores form an angle of 74 with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the-particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b05856 SN - 1932-7447 VL - 120 SP - 19416 EP - 19433 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zehbe, Rolf A1 - Zehbe, Kerstin T1 - Strontium doped poly-epsilon-caprolactone composite scaffolds made by reactive foaming JF - The European journal of the history of economic thought N2 - In the reconstruction and regeneration of bone tissue, a primary goal is to initiate bone growth and to stabilize the surrounding bone. In this regard, a potentially useful component in biomaterials for bone tissue engineering is strontium, which acts as cationic active agent, triggering certain intracellular pathways and acting as so called dual action bone agent which inhibits bone resorption while stimulating bone regeneration. In this study we established a novel processing for the foaming of a polymer (poly-epsilon-caprolactone) and simultaneous chemical reaction of a mixture of calcium and strontium hydroxides to the respective carbonates using supercritical carbon dioxide. The resultant porous composite scaffold was optimized in composition and strontium content and was characterized via different spectroscopic (infrared and Raman spectroscopy, energy dispersive X-ray spectroscopy), imaging (SEM, mu CT), mechanical testing and in vitro methods (fluorescence vital staining, MTT-assay). As a result, the composite scaffold showed good in vitro biocompatibility with partly open pore structure and the expected chemistry. First mechanical testing results indicate sufficient mechanical stability to support future in vivo applications. (C) 2016 Elsevier B.V. All rights reserved. KW - Strontium KW - Poly-epsilon-caprolactone KW - Porous scaffold KW - CAL-72 osteoblasts KW - L-929 fibroblasts KW - Reactive foaming KW - mu CT imaging KW - Spectroscopy Y1 - 2016 U6 - https://doi.org/10.1016/j.msec.2016.05.045 SN - 0928-4931 SN - 1873-0191 VL - 67 SP - 259 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kopec, Maciej A1 - Rozpedzik, Anna A1 - Lapok, Lukasz A1 - Geue, Thomas A1 - Laschewsky, Andre A1 - Zapotoczny, Szczepan T1 - Stratified Micellar Multilayers-Toward Nanostructured Photoreactors JF - Chemistry of materials : a publication of the American Chemical Society N2 - Polyelectrolyte multilayers (PEMs) with stratification of the internal structure were assembled from statistical amphiphilic copolyelectrolytes of opposite charges. These polyelectrolytes organize in aqueous solutions into micellar structures with fluoroalkyl and aromatic nanodomains, respectively, that were also preserved after deposition as thin films via layer-by-layer (LbL) electrostatic self-assembly. The unimolecular micelles, formed due to statistical compositions of amphiphilic polyelectrolytes used, were shown to suppress chain interdiffusion between adjacent layers in resulting micellar PEMs, as evidenced by spectroscopic ellipsometry, atomic force microscopy (AFM), and neutron reflectometry (NR) measurements. Additionally, hydrophobic cores of the micelles were used as hosts for photoactive molecules, namely, ferrocene and perfluorinated magnesium phthalocyanine. Stratified micellar multilayers were then deposited as hollow capsules using CaCO3 microparticles as templates. Photoinduced electron transfer (PET) between ferrocene and phthalocyanine solubilized in the polymer micelles was demonstrated to occur efficiently inside the stratified, polyelectrolyte walls of the capsules, due to the polarity gradient created by the incompatible aromatic and fluoroalkyl domains. The obtained results present a new approach to construct well-organized, self-assembled nanostructured materials for solar energy conversion. Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemmater.6b00161 SN - 0897-4756 SN - 1520-5002 VL - 28 SP - 2219 EP - 2228 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Stimuli Responsive and Multifunctional Polymers: Progress in Materials and Applications JF - Macromolecular rapid communications Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600650 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1856 EP - 1859 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schmidt, Bernd A1 - Audoersch, Stephan A1 - Kunz, Oliver T1 - Stereoselective Synthesis of 2Z,4E-Configured Dienoates through Tethered Ring Closing Metathesis JF - Synthesis KW - allyl alcohols KW - dienes KW - ring closing metathesis KW - ruthenium KW - elimination Y1 - 2016 U6 - https://doi.org/10.1055/s-0035-1562536 SN - 0039-7881 SN - 1437-210X VL - 48 SP - 4509 EP - 4518 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prestel, Andreas A1 - Möller, Heiko Michael T1 - Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides JF - Chemical communications N2 - The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control. Y1 - 2016 U6 - https://doi.org/10.1039/c5cc06848g SN - 1359-7345 SN - 1364-548X VL - 52 SP - 701 EP - 704 PB - Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Friese, Viviane A. T1 - Solvato-, vapo, mechanochromic and luminescent behavior of Rhodium, Platinum and Gold complexes and their coordination polymers Y1 - 2016 ER - TY - JOUR A1 - Krüger, Tobias A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Linker, Torsten T1 - Simple Synthesis of gamma-Spirolactams by Birch Reduction of Benzoic Acids JF - European journal of organic chemistry N2 - A convenient synthesis of gamma-spirolactams in only two steps was developed. Birch reduction of benzoic acids and immediate alkylation with chloroacetonitrile afforded cyclohexadienes in high yields. The products could be isolated by crystallization on a large scale in analytically pure form. Subsequent hydrogenation with platinum(IV) oxide as the catalyst reduced the nitrile functionality and the double bonds in the same step with excellent stereoselectivity. The relative configurations were determined unequivocally by X-ray analyses. Direct cyclization of the intermediary formed amino acids afforded the desired gamma-spirolactams in excellent overall yields. The procedure is characterized by few steps, cheap reagents, and can be performed on a large scale, interesting for industrial processes. KW - Diastereoselectivity KW - Hydrogenation KW - Lactams KW - Reduction KW - Synthetic methods Y1 - 2016 U6 - https://doi.org/10.1002/ejoc.201601650 SN - 1434-193X SN - 1099-0690 IS - 6 SP - 1074 EP - 1077 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Paramonov, Guennaddi K. A1 - Kuehn, O. A1 - Bandrauk, Andre D. T1 - Shaped Post-Field Electronic Oscillations in H-2(+) Excited by Two-Cycle Laser Pulses: Three-Dimensional Non-Born-Oppenheimer Simulations JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Quantum dynamics of H-2(+) excited by two-cycle laser pulses with laser carrier frequencies corresponding to the wavelengths lambda(1) = 800 and 200 nm (corresponding to the periods tau(1) = 2.667 and 0.667 fs, respectively) and being linearly polarized along the molecular axis have been studied by the numerical solution of the non-Born-Oppenheimer time-dependent Schrodinger equation within a three-dimensional (3D) model, including the internuclear distance R and electron coordinates z and rho. The amplitudes of the pulses have been chosen such that the energies of H-2(+) after the ends of the laser pulses, < E > approximate to-0.515 au, were close to the dissociation threshold of H-2(+). It is found that there exists a certain characteristic oscillation frequency omega(osc) = 0.2278 au (corresponding to the period tau(osc) = 0.667 fs and the wavelength lambda(osc) = 200 nm) that plays the role of a "carrier" frequency of temporally shaped oscillations of the expectation values <-partial derivative V/partial derivative z) emerging after the ends of the laser pulses, both at lambda(1) = 800 nm and at lambda(1) = 200 nm. Moreover, at lambda(1) = 200 nm, the expectation value < z > also demonstrates temporally shaped oscillations after the end of the laser pulse. In contrast, at lambda(1) = 800 nm, the characteristic oscillation frequency omega(osc) = 0.2278 au appears as the frequency of small-amplitude oscillations of the slowly varying expectation value < z > which makes, after the end of the pulse, an excursion with an amplitude of about 4.5 au along the z axis and returns back to < z > approximate to 0 afterward. It is found that the period of the temporally shaped post-field oscillations of <-partial derivative V/partial derivative z > and < z >, estimated as tau(shp) approximate to 30 fs, correlates with the nuclear motion. It is also shown that vibrational excitation of H-2(+) is accompanied by the formation of "hot" and "cold" vibrational ensembles along the R degree of freedom. Power spectra related to the electron motion in H-2(+) calculated for both the laser-driven z and optically passive rho degrees of freedom in the acceleration form proved to be very interesting. In particular, both odd and even harmonics can be observed. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpca.5b11599 SN - 1089-5639 VL - 120 SP - 3175 EP - 3185 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Frieß, Fabian T1 - Shape-memory polymer micronetworks Y1 - 2016 ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Kopyra, Janina A1 - Dabkowska, Iwona A1 - Ebel, Kenny A1 - Rankovic, MiloS Lj. A1 - Milosavljevic, Aleksandar R. A1 - Bald, Ilko T1 - Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - 2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies. KW - ab initio calculations KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - fludarabine Y1 - 2016 U6 - https://doi.org/10.1002/anie.201603464 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 10248 EP - 10252 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Storch, Golo A1 - Maier, Frank A1 - Wessig, Pablo A1 - Trapp, Oliver T1 - Rotational Barriers of Substituted BIPHEP Ligands: A Comparative Experimental and Theoretical Study JF - European journal of organic chemistry N2 - The interconversion barriers of 14 different 3,3- and 5,5-disubstituted tropos BIPHEP [2,2-bis(diphenylphosphino)-1,1-biphenyl] and BIPHEP(O) [2,2-bis(diphenylphosphoryl)-1,1-biphenyl] ligands were investigated by enantioselective dynamic high performance liquid chromatography (DHPLC) and DFT calculations using the B3LYP/6-31G* and M06-2X/6-31G* levels of theory. The experimentally determined enantiomerization barriers varied from 86.8 to 101.4 kJmol(-1) and were found to be in excellent agreement with the calculated data. The root-mean-square deviations are 7.3 kJmol(-1) for the B3LYP functional and 11.3 kJmol(-1) for the M06-2X method. KW - Rotational barriers KW - Density functional calculations KW - Enantioselectivity KW - P ligands KW - Biaryls KW - Liquid chromatography Y1 - 2016 U6 - https://doi.org/10.1002/ejoc.201600836 SN - 1434-193X SN - 1099-0690 VL - 22 SP - 5123 EP - 5126 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vorburger, Thomas A1 - Nedielkov, Ruslan A1 - Brosig, Alexander A1 - Bok, Eva A1 - Schunke, Emina A1 - Steffen, Wojtek A1 - Mayer, Sonja A1 - Goetz, Friedrich A1 - Möller, Heiko Michael A1 - Steuber, Julia T1 - Role of the Na+-translocating NADH:quinone oxidoreductase in voltage generation and Na+ extrusion in Vibrio cholerae JF - Biochimica et biophysica acta : Bioenergetics N2 - For Vibrio cholerae, the coordinated import and export of Na+ is crucial for adaptation to habitats with different osmolarities. We investigated the Na+-extruding branch of the sodium cycle in this human pathogen by in vivo Na-23-NMR spectroscopy. The Na+ extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). In a V. cholerae deletion mutant devoid of the Na+-NQR encoding genes (nqrA-F), rates of respiratory Na+ extrusion were decreased by a factor of four, but the cytoplasmic Na+ concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (Delta psi, inside negative) and did not grow under hypoosmotic conditions at pH 8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na+/H+ antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na+ concentrations, the Na+-NQR is crucial for generation of a transmembrane voltage to drive the import of H+ by electrogenic Na+/H+ antiporters. Our study provides the basis to understand the role of the Na+-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na+ pump for respiration. (C) 2015 Elsevier B.V. All rights reserved. KW - Nuclear magnetic resonance (NMR) KW - Sodium transport KW - Vibrio cholerae KW - Respiration KW - Na+ homeostasis KW - Hypoosmotic stress Y1 - 2016 U6 - https://doi.org/10.1016/j.bbabio.2015.12.010 SN - 0005-2728 SN - 0006-3002 VL - 1857 SP - 473 EP - 482 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Oliveira, Joana Santos Lapa T1 - Role of different ceramides on the nanostructure of Stratum Corneum models and the influence of selected penetration enhancers Y1 - 2016 ER - TY - JOUR A1 - Zeng, Ting A1 - Frasca, Stefano A1 - Rumschöttel, Jens A1 - Koetz, Joachim A1 - Leimkühler, Silke A1 - Wollenberger, Ursula T1 - Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis KW - Direct electron transfer KW - Protein voltammetry KW - Human sulfite oxidase KW - Bioelectrocatalysis KW - Nanoparticles Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600246 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2303 EP - 2310 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Eisold, Ursula A1 - Behrends, Nicole A1 - Wessig, Pablo A1 - Kumke, Michael Uwe T1 - Rigid Rod-Based FRET Probes for Membrane Sensing Applications JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Oligospirothioketal (OSTK) rods are presented as an adjustable scaffold for optical membrane probes. The OSTK rods are readily incorporated into lipid bilayers due to their hydrophobic backbones. Because of their high length-over-diameter aspect ratio, only a minimal disturbance of the lipid bilayer is caused. OSTK rods show outstanding rigidity and allow defined labeling with fluorescent dyes, yielding full control of the orientation between the dye and OSTK skeleton. This. allows the construction of novel Forster resonance energy transfer probes with highly defined relative orientations of the transition dipole moments of the donor and acceptor dyes and makes the class of OSTK probes a power-fill, flexible toolbox for optical biosensing applications. Data on steady-state and time-resolved fluorescence experiments investigating the incorporation of coumarin- and [1,3]-dioxolo[4,5-f][1,3]benzo-dioxole-labeled OSTKs in large unilamellar vesicles are presented as a show case. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcb.6b07285 SN - 1520-6106 VL - 120 SP - 9935 EP - 9943 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Demirel, A. Levent A1 - Guner, Pinar Tatar A1 - Verbraeken, Bart A1 - Schlaad, Helmut A1 - Schubert, Ulrich S. A1 - Hoogenboom, Richard T1 - Revisiting the Crystallization of Poly(2-alkyl-2-oxazoline)s JF - Journal of polymer science : B, Polymer physics N2 - Poly(2-alkyl-2-oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (T-g) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt-recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 degrees C and PiPropOx between 90 and 150 degrees C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > T-g with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. (C) 2015 Wiley Periodicals, Inc. KW - chain mobility KW - crystallization KW - differential scanning calorimetry (DSC) KW - effect of alkyl side chains KW - glass transition temperature KW - melt KW - melt-recrystallization KW - polymer crystallization Y1 - 2016 U6 - https://doi.org/10.1002/polb.23967 SN - 0887-6266 SN - 1099-0488 VL - 54 SP - 721 EP - 729 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kathrein, Christine C. A1 - Pester, Christian A1 - Ruppel, Markus A1 - Jung, Maike A1 - Zimmermann, Marc A1 - Böker, Alexander T1 - Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field JF - Soft matter N2 - Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electricfield-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01073c SN - 1744-683X SN - 1744-6848 VL - 12 SP - 8417 EP - 8424 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine N2 - The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 330 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395113 ER - TY - JOUR A1 - Kyriakos, Konstantinos A1 - Philipp, Martine A1 - Lin, Che-Hung A1 - Dyakonova, Margarita A1 - Vishnevetskaya, Natalya A1 - Grillo, Isabelle A1 - Zaccone, Alessio A1 - Miasnikova, Anna A1 - Laschewsky, Andre A1 - Mueller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency JF - Macromolecular rapid communications N2 - The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems. KW - colloidal aggregation KW - cononsolvency KW - interaction potential KW - polymer solutions KW - self-assembled micelles KW - thermoresponsive polymers Y1 - 2016 U6 - https://doi.org/10.1002/marc.201500583 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 420 EP - 425 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Rasovic, Aleksandar A1 - Blagojevic, Vladimir A1 - Baranac-Stojanovic, Marija A1 - Kleinpeter, Erich A1 - Markovic, Rade A1 - Minic, Dragica M. T1 - Quantification of the push–pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond N2 - Information about the strength of donor–acceptor interactions in push–pull alkenes is valuable, as this so-called “push–pull effect” influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push–pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor–acceptor interactions in the push–pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push–pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push–pull effect in these and related systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 322 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394523 SP - 6364 EP - 6373 ER - TY - JOUR A1 - Rasovic, Aleksandar A1 - Blagojevic, Vladimir A1 - Baranac-Stojanovic, Marija A1 - Kleinpeter, Erich A1 - Markovic, Rade A1 - Minic, Dragica M. T1 - Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond JF - New journal of chemistry N2 - Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect' influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the CQC double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in C-13 NMR chemical shifts of the two carbons constituting the CQC double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters ( apparent activation energy Ea and frequency factor A) and activation parameters ( Delta S-double dagger, Delta H-double dagger and Delta G(double dagger)), were determined from the data of the experimentally studied configurational isomerization of ( E)-9a. These results were compared to previously published related data for other two compounds, ( Z)-1b and ( 2E, 5Z)-7, showing that experimentally determined Delta G(double dagger) values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated CQC bond lengths and corroborate the applicability of Delta G(double dagger) for estimation of the strength of the push-pull effect in these and related systems. Y1 - 2016 U6 - https://doi.org/10.1039/c6nj00901h SN - 1144-0546 SN - 1369-9261 VL - 40 SP - 6364 EP - 6373 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fang, Liang A1 - Yan, Wan A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Programming structural functions in phase-segregated polymers by implementing a defined thermomechanical history JF - Polymer : the international journal for the science and technology of polymers N2 - Unwanted shrinkage behaviors or failure in structural functions such as mechanical strength or deformability of polymeric products related to their thermomechanical history are a major challenge in production of plastics. Here, we address the question whether we can turn this challenge into an opportunity by creating defined thermomechanical histories in polymers, represented by a specific morphology and nanostructure, to equip polymeric shaped bodies with desired functions, e.g. a temperature-memory, by hot, warm or cold deformation into multiblock copolymers having two partially overlapping melting transitions. A copolyesterurethane named PDLCL, consisting of poly(epsilon-caprolactone) (PCL) and poly(omega-pentadecalactone) (PPDL) crystalline domains, exhibiting a pronounced phase-segregated morphology and partially overlapping melting transitions was selected for this study. Different types of PCL and PPDL crystals as well as distinct degrees of orientation in both amorphous and crystalline domains were obtained after deformation at 20 or 40 degrees C and to a lower extent at 60 degrees C. The generated non-isotropic structures were stable at ambient temperature and represent the different stresses stored. Stress-free heating experiments showed that the relaxation in both amorphous and crystalline phases occurred predominantly with melting of PCL crystals. When the switching temperature, which was similar to the applied deformation temperature (temperature-memory), was exceeded in stress-free heating experiments, the implemented thermomechanical history could be reversed. In contrast, during constant-strain heating to 60 degrees C the generated structural features remained almost unchanged. These findings provide insights about the structure function relation in multiblock copolymers with two crystalline phases exhibiting a temperature-memory effect by implementation of specific thermomechanical histories, which might be a general principle for tailoring other functions like mechanical strength or deformability in polymers. (C) 2016 Elsevier Ltd. All rights reserved. KW - Temperature-memory effect KW - Phase morphology KW - Thermomechanical history Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.08.105 SN - 0032-3861 SN - 1873-2291 VL - 102 SP - 54 EP - 62 PB - Elsevier CY - Oxford ER - TY - THES A1 - Täuber, Karoline T1 - Porous Membranes from Imidazolium- and Pyridinium-based Poly(ionic liquid)s with Targeted Properties Y1 - 2016 ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo(epsilon-caprolactone) based films at the air-water interface JF - Polymer Degradation and Stability N2 - The enzymatic degradation of oligo(epsilon-caprolactone) (OCL) based films at the air-water interface is investigated by Langmuir monolayer degradation (LMD) experiments to elucidate the influence of the molecular architecture and of the chemical structure on the chain scission process. For that purpose, the interactions of 2D monolayers of two star-shaped poly(epsilon-caprolactone)s (PCLs) and three linear OCL based copolyesterurethanes (P(OCL-U)) with the lipase from Pseudomonas cepacia are evaluated in comparison to linear OCL. While the architecture of star-shaped PCL Langmuir layers slightly influences their degradability compared to OCL films, significantly retarded degradations are observed for P(OCL-U) films containing urethane junction units derived from 2, 2 (4), 4-trimethyl hexamethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI) or lysine ethyl ester diisocyanate (LDI). The enzymatic degradation of the OCL based 2D structures is related to the presence of hydrophilic groups within the macromolecules rather than to the packing density of the film or to the molecular weight. The results reveal that the LMD technique allows the parallel analysis of both the film/enzyme interactions and the degradation process on the molecular level. (C) 2016 Elsevier Ltd. All rights reserved. KW - Langmuir technique KW - Oligo(epsilon-caprolactone) KW - Enzymatic degradation KW - Polymer architecture Y1 - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.07.010 SN - 0141-3910 SN - 1873-2321 VL - 131 SP - 114 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Poghosyan, Armen H. A1 - Arsenyan, Levon H. A1 - Shahinyan, Aram A. A1 - Koetz, Joachim T1 - Polyethyleneimine loaded inverse SDS micelle in pentanol/toluene media JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - An atomic scale molecular dynamics simulation (100 ns) was carried out to reveal the conformational features of a cationic polyelectrolyte, i.e., hyperbranched polyethyleneimine (PEI), inside of water-in-oil microemulsion droplets stabilized by the anionic sodium dodecyl sulfate surfactant (SDS) layer. Simulations show that the polymer reorients very quickly and is localized at the headgroup region, i.e., the polymer nitrogens are close to SDS sulfur atoms. In spite of the availability of surface roughness caused by the polymer, we track a stable inverse micelle during the production run. In overall, the obtained parameters are well compared with experimental findings. (C) 2016 Elsevier B.V. All rights reserved. KW - SDS inverse micelle KW - Polyethyleneimine KW - Molecular dynamics simulations KW - Microemulsions Y1 - 2016 U6 - https://doi.org/10.1016/j.colsurfa.2016.07.018 SN - 0927-7757 SN - 1873-4359 VL - 506 SP - 402 EP - 408 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schulze, Nicole A1 - Prietzel, Claudia Christina A1 - Koetz, Joachim T1 - Polyampholyte-mediated synthesis of anisotropic gold nanoplatelets JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - This paper focused on the synthesis of triangular nanoplatelets in the presence of a tubular network structure. The tubular network structure is formed by adding a strongly alternating polyampholyte, i.e., PalPhBisCarb, to a mixed vesicle system with a negatively charged bilayer containing phosphatidylcholin and AOT. Using the tubular network as a reducing agent in a one-step procedure, triangular and hexagonal nanoplatelets are formed. One can show that the nanoplatelet yield is enhanced by increasing the temperature and decreasing the reaction time. The platelet edge length can be decreased by heating the system up to 100 A degrees C. Due to specific interactions between PalPhBisCarb and the AOT/phospholipid bilayer, stacking and welding effects lead to the formation of ordered platelet structures. The reaction pathway to flat gold nanotriangles is discussed with regard to the twin plane growth model of gold nanoplates. KW - Polyampholytes KW - Tubular network structure KW - Anisotropic gold nanoplatelets KW - Nanocrystal growth KW - Nanotriangle stacking and welding Y1 - 2016 U6 - https://doi.org/10.1007/s00396-016-3890-y SN - 0303-402X SN - 1435-1536 VL - 294 SP - 1297 EP - 1304 PB - Springer CY - New York ER - TY - JOUR A1 - Vacogne, Charlotte D. A1 - Schopferer, Michael A1 - Schlaad, Helmut T1 - Physical Gelation of alpha-Helical Copolypeptides JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Owing to its rod-like alpha-helical secondary structure, the synthetic polypeptide poly(gamma-benzyl-L-glutamate) (PBLG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBLG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBLG and a series of statistical poly(gamma-benzyl-L-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS). The secondary structure of PBLG and the copolypeptides presented dissimilarities that increased with increasing AG molar fraction, especially when racemic AG units were incorporated. The physical gelation behavior of these copolypeptides was analyzed by temperature-sweep H-1 NMR and rheological measurements. The study revealed that both copolypeptide composition and chain length affected secondary structure, gelation temperature, and gel stiffness. Y1 - 2016 U6 - https://doi.org/10.1021/acs.biomac.6b00427 SN - 1525-7797 SN - 1526-4602 VL - 17 SP - 2384 EP - 2391 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schneider, Rudolf A1 - Weigert, F. A1 - Lesnyak, V. A1 - Leubner, S. A1 - Lorenz, T. A1 - Behnke, Thomas A1 - Dubavik, A. A1 - Joswig, J. -O. A1 - Resch-Genger, U. A1 - Gaponik, N. A1 - Eychmueller, A. T1 - pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which – together with alloyed CdxHg1−xTe – are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1−xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp03123d SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 19083 EP - 19092 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schneider, Ralf A1 - Weigert, Florian A1 - Lesnyak, Vladimir A1 - Leubner, Susanne A1 - Lorenz, Tommy A1 - Behnke, Thomas A1 - Dubavik, Aliaksei A1 - Joswig, Jan-Ole A1 - Resch-Genger, Ute A1 - Gaponik, Nikolai A1 - Eychmüller, Alexander T1 - pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O N2 - The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which – together with alloyed CdxHg1−xTe – are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1−xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 332 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395143 ER - TY - JOUR A1 - Gangloff, Niklas A1 - Ulbricht, Juliane A1 - Lorson, Thomas A1 - Schlaad, Helmut A1 - Luxenhofer, Robert T1 - Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering JF - Chemical reviews Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemrev.5b00201 SN - 0009-2665 SN - 1520-6890 VL - 116 SP - 1753 EP - 1802 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Thünemann, Andreas F. A1 - Koetz, Joachim T1 - Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases JF - Langmuir N2 - The mechanism of nanotriangle formation in multivesicular vesicles (MMV) is investigated by using time-dependent SAXS measurements in combination with UV-vis spectroscopy, light, and transmission electron microscopy. In the first time period 6.5 nm sized spherical gold nanoparticles are formed inside of the vesicles, which build up soft nanoparticle aggregates. a) In situ SAXS experiments show a linear increase of the volume and molar mass of nanotriangles in the second time period. The volume growth rate of the triangles is 16.1 nm(3)/min, and the growth rate in the vertical direction is only 0.02 nm/min. Therefore, flat nanotriangles with a thickness of 7 nm and a diameter of 23 nm are formed. This process can be described by a diffusion limited Ostwald ripening growth mechanism. TEM micrographs visualize soft coral-like structures with thin nanoplatelets at the periphery of the aggregates, which disaggregate in the third time period into nanotriangles and spherical particles. The 16 times faster growth of nanotriangles in the lateral than that in the vertical direction is related to the adsorption of symmetry breaking components, i.e., AOT and the polyampholyte PalPhBisCarb, on the {111} facets of the gold nanoplatelets in combination with confinement effects of the vesicular template phase. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b02662 SN - 0743-7463 VL - 32 SP - 10928 EP - 10935 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Draffehn, Sören T1 - Optical Spectroscopy-Based Characterization of Micellar and Liposomal Systems with Possible Applications in Drug Delivery Y1 - 2016 ER - TY - THES A1 - Wei, Chunxiang T1 - On the role of monomer drops and swelling in aqueous heterophase polymerization Y1 - 2016 ER - TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Couturier, Jean-Philippe T1 - New inverse opal hydrogels as platform for detecting macromolecules T1 - Neue inverse Opal-Hydrogele als Plattform für die Detektion von Makromolekülen N2 - In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit – analyte model systems, such as benzoboroxole – 1,2-diols, biotin – avidin and mannose – concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations. N2 - Periodisch strukturierte, funktionelle responsive Hydrogele wurden in Form von inversen Opalen (IOH) aufgebaut und als Basiselement für Temperatur-, pH-, lösungsmittel-, 1,2-diol- oder protein-sensitive Sensorsysteme entwickelt. Dazu wurden aus biokompatiblen Bausteinen funktionelle photonische Kristalle aufgebaut, deren optische Bandlücke durch selektive Bindung eines Analyten moduliert wird, indem dieser einen Volumen-Phasenübergang induziert.Mittels solcher responsiver photonische Kristalle ist es möglich, Analyte ohne aufwendige Geräte durch Farbänderung einfach zu detektieren. Die entwickelten Systeme zeigen nicht nur eine hohe Empfindlichkeit gegenüber kleinen Biomolekülen, sondern auch gegenüber größeren Analyten wie z.B. Glycopolymeren und Proteinen, was bisher nicht bekannt war. Die stimuli-sensitiven inversen Opal Hydrogele (IOHs) wurden in mehreren Stufen hergestellt. Als erstes wurden dafür kolloidale Kristalle mit hexagonal gepackten Strukturen aus monodispersen SiO2-Partikeln auf Glasträgern auf ebaut (“Opal”). Die Opale mit charakteristischen Strukturfarben wurden anschließend in eine polymere Hydrogelmatrix eingebettet. Diese wurde aus Oligo(ethylenglycol)methacrylaten (OEGMAs) hergestellt, so dass die Hydrogele sowohl thermosensitives als auch “lowfouling” Verhalten zeigen. Im letzten Schritt wurden die SiO2-Partikel entfernt und so eine hochporöse Hydrogel-Replika der Opale erhalten unter Erhalt deren innerer Struktur und Strukturfarbe. Die miteinander verbunden Poren der IOHMembran besitzen einen Durchmesser von einigen hundert Nanometern. Dies ermöglichte nicht nur die Detektion von kleinen Analyten, sondern auch die Detektion von deutlich größeren, makromolekularen Analyten, die ebenfalls in die Nanostrukturen der IOH Membran diffundieren können. Modellsysteme bestanden immer aus einer Erkennungsgruppe und einem Analyten, beispielsweise aus Benzoboroxol – 1,2-Diol, Biotin – Avidin und Mannose – Lectin (Concanavalin A). Für dieseModellsysteme wurden OEGMAs mitMonomeren copolymerisiert, die mit Benzoboroxol, Biotin bzw.Mannose funktionalisiert waren. Die so im Polymer eingebauten Erkennungsgruppen binden spezifisch an bestimmte Biomoleküle unterschiedlicherMolmassen, wie z.B. niedermolekulare Saccharide oder Catechin, als auch hochmolekulare Glycopolymere oder Proteine. Der spezifische Bindungsvorgang moduliert die Gesamthydrophilie, so dass sich der Quellgrad der IOH-Matrix ändert. Dies wiederrumverändert die innere Periodizität und damit die Strukturfarbe. Dabei wird der Quelleffekt durch die Thermosensitivität der Hydrogele massiv verstärkt. Eine spezifischeMolekülanbindung lässt sich so optisch, z.T. sogar mit dem Auge, erkennen aufgrund der deutlichen Verschiebung der Strukturfarbe um bis zu 150 nm. Des Weiteren wurden auch erste Versuche zur Detektion von noch größeren Analyten unternommen. Dafür wurden Antiköper durch nachträgliche Modifizierung der Polymerseitenketten auf den Hydrogeloberflächen immobilisiert. Mit diesem Modellsystem konnten unterschiedliche Bakterienarten durch Antikörper spezifisch gebunden werden. Die verwendeten Bakterienarten sind zwar zu groß, um in die Membran des IOH Systems einzudringen, können jedoch mit der IOH-Oberfläche wechselwirken. Insbesondere dasModellsystem mit Escherichia coli zeigte eine starke, spezifische Affinität zu dem Antikörper-funktionalisierten IOH. Überraschenderweise zeigte sich bei den Versuchen in Gegenwart des Analyten eine kleine Farbänderung der funktionalisierten IOH. Damit eröffnet sich u.U. dieMöglichkeit, mit solchen responsiven photonischen Kristallen auch lebende Organismen spezifisch und einfach zu detektieren, was in weiterführenden Arbeiten zu klären sein wird. KW - inverse opal KW - hydrogel KW - responsive polymer KW - inverse Opale KW - Hydrogel KW - schaltbare Polymere Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98412 ER - TY - JOUR A1 - Draffehn, Soeren A1 - Kumke, Michael Uwe T1 - Monitoring the Collapse of pH-Sensitive Liposomal Nanocarriers and Environmental pH Simultaneously: A Fluorescence-Based Approach JF - Molecular pharmaceutics N2 - Nowadays, the encapsulation of therapeutic compounds in so-called carrier systems is a very smart method to achieve protection as well as an improvement of their temporal and spatial distribution. After the successful transport to the point of care, the delivery has to be released under controlled conditions. To monitor the triggered release from the carrier, we investigated different fluorescent probes regarding their response to the pH-induced collapse of pH-sensitive liposomes (pHSLip), which occurs when the environmental pH falls below a critical value. Depending on the probe, the fluorescence decay time as well as fluorescence anisotropy can be used equally as key parameters for monitoring the collapse. Especially the application of a fluorescein labeled fatty acid (fPA) enabled the monitoring of the pHSLips collapse and the pH of its microenvironment simultaneously without interference. Varying the pH in the range of 3 < pH < 9, anisotropy data revealed the critical pH value at which the collapse of the pHSLips occurs. Complementary methods, e.g., fluorescence correlation spectroscopy and dynamic light scattering, supported the analysis based on the decay time and anisotropy. Additional experiments with varying incubation times yielded information on the kinetics of the liposomal collapse. KW - pH-sensitive liposome KW - drug carrier system KW - selective drug release KW - intracellular pH indicator KW - time-resolved fluorescence spectroscopy KW - fluorescence anisotropy KW - fluorescence correlation spectroscopy Y1 - 2016 U6 - https://doi.org/10.1021/acs.molpharmaceut.5b00064 SN - 1543-8384 VL - 13 SP - 1608 EP - 1617 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wessig, Pablo A1 - Gerngross, Maik A1 - Freyse, Daniel A1 - Bruhn, P. A1 - Przezdziak, Marc A1 - Schilde, Uwe A1 - Kelling, Alexandra T1 - Molecular Rods Based on Oligo-spiro-thioketals JF - The journal of organic chemistry N2 - We report on an extension of the previously established concept of oligospiroketal (OSK) rods by replacing a part or all ketal moieties by thioketals leading to oligospirothioketal (OSTK) rods. In this way, some crucial problems arising from the reversible formation of ketals are circumvented. Furthermore, the stability of the rods toward hydrolysis is considerably improved. To successfully implement this concept, we first developed a number of new oligothiol building blocks and improved the synthetic accessibility of known oligothiols, respectively. Another advantage of thioacetals is that terephthalaldehyde (TAA) sleeves, which are too flexible in the case of acetals can be used in OSTK rods. The viability of the OSTK approach was demonstrated by the successful preparation of some OSTK rods with a length of some nanometers. Y1 - 2016 U6 - https://doi.org/10.1021/acs.joc.5b02670 SN - 0022-3263 VL - 81 SP - 1125 EP - 1136 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Ulaganathan, Vamseekrishna T1 - Molecular fundamentals of foam fractionation T1 - Molekulare Grundlagen der Schaumfraktionierung N2 - Foam fractionation of surfactant and protein solutions is a process dedicated to separate surface active molecules from each other due to their differences in surface activities. The process is based on forming bubbles in a certain mixed solution followed by detachment and rising of bubbles through a certain volume of this solution, and consequently on the formation of a foam layer on top of the solution column. Therefore, systematic analysis of this whole process comprises of at first investigations dedicated to the formation and growth of single bubbles in solutions, which is equivalent to the main principles of the well-known bubble pressure tensiometry. The second stage of the fractionation process includes the detachment of a single bubble from a pore or capillary tip and its rising in a respective aqueous solution. The third and final stage of the process is the formation and stabilization of the foam created by these bubbles, which contains the adsorption layers formed at the growing bubble surface, carried up and gets modified during the bubble rising and finally ends up as part of the foam layer. Bubble pressure tensiometry and bubble profile analysis tensiometry experiments were performed with protein solutions at different bulk concentrations, solution pH and ionic strength in order to describe the process of accumulation of protein and surfactant molecules at the bubble surface. The results obtained from the two complementary methods allow understanding the mechanism of adsorption, which is mainly governed by the diffusional transport of the adsorbing protein molecules to the bubble surface. This mechanism is the same as generally discussed for surfactant molecules. However, interesting peculiarities have been observed for protein adsorption kinetics at sufficiently short adsorption times. First of all, at short adsorption times the surface tension remains constant for a while before it decreases as expected due to the adsorption of proteins at the surface. This time interval is called induction time and it becomes shorter with increasing protein bulk concentration. Moreover, under special conditions, the surface tension does not stay constant but even increases over a certain period of time. This so-called negative surface pressure was observed for BCS and BLG and discussed for the first time in terms of changes in the surface conformation of the adsorbing protein molecules. Usually, a negative surface pressure would correspond to a negative adsorption, which is of course impossible for the studied protein solutions. The phenomenon, which amounts to some mN/m, was rather explained by simultaneous changes in the molar area required by the adsorbed proteins and the non-ideality of entropy of the interfacial layer. It is a transient phenomenon and exists only under dynamic conditions. The experiments dedicated to the local velocity of rising air bubbles in solutions were performed in a broad range of BLG concentration, pH and ionic strength. Additionally, rising bubble experiments were done for surfactant solutions in order to validate the functionality of the instrument. It turns out that the velocity of a rising bubble is much more sensitive to adsorbing molecules than classical dynamic surface tension measurements. At very low BLG or surfactant concentrations, for example, the measured local velocity profile of an air bubble is changing dramatically in time scales of seconds while dynamic surface tensions still do not show any measurable changes at this time scale. The solution’s pH and ionic strength are important parameters that govern the measured rising velocity for protein solutions. A general theoretical description of rising bubbles in surfactant and protein solutions is not available at present due to the complex situation of the adsorption process at a bubble surface in a liquid flow field with simultaneous Marangoni effects. However, instead of modelling the complete velocity profile, new theoretical work has been started to evaluate the maximum values in the profile as characteristic parameter for dynamic adsorption layers at the bubble surface more quantitatively. The studies with protein-surfactant mixtures demonstrate in an impressive way that the complexes formed by the two compounds change the surface activity as compared to the original native protein molecules and therefore lead to a completely different retardation behavior of rising bubbles. Changes in the velocity profile can be interpreted qualitatively in terms of increased or decreased surface activity of the formed protein-surfactant complexes. It was also observed that the pH and ionic strength of a protein solution have strong effects on the surface activity of the protein molecules, which however, could be different on the rising bubble velocity and the equilibrium adsorption isotherms. These differences are not fully understood yet but give rise to discussions about the structure of protein adsorption layer under dynamic conditions or in the equilibrium state. The third main stage of the discussed process of fractionation is the formation and characterization of protein foams from BLG solutions at different pH and ionic strength. Of course a minimum BLG concentration is required to form foams. This minimum protein concentration is a function again of solution pH and ionic strength, i.e. of the surface activity of the protein molecules. Although at the isoelectric point, at about pH 5 for BLG, the hydrophobicity and hence the surface activity should be the highest, the concentration and ionic strength effects on the rising velocity profile as well as on the foamability and foam stability do not show a maximum. This is another remarkable argument for the fact that the interfacial structure and behavior of BLG layers under dynamic conditions and at equilibrium are rather different. These differences are probably caused by the time required for BLG molecules to adapt respective conformations once they are adsorbed at the surface. All bubble studies described in this work refer to stages of the foam fractionation process. Experiments with different systems, mainly surfactant and protein solutions, were performed in order to form foams and finally recover a solution representing the foamed material. As foam consists to a large extent of foam lamella – two adsorption layers with a liquid core – the concentration in a foamate taken from foaming experiments should be enriched in the stabilizing molecules. For determining the concentration of the foamate, again the very sensitive bubble rising velocity profile method was applied, which works for any type of surface active materials. This also includes technical surfactants or protein isolates for which an accurate composition is unknown. N2 - Die Fraktionierung ist ein Trennprozess, bei dem verschiedene Materialien auf Grund ihrer Eigenschaften voneinander getrennt werden. Bei der Sedimentation von Teilchen in einer Flüssigkeit dient deren unterschiedliche Dichte zu ihrer Trennung, da schwere Teilchen schneller auf den Boden des Gefäßes sinken als leichtere. Bei der Schaumfraktionierung als Trennprozess dient zur Trennung verschiedener Moleküle in einer Lösung deren Grenzflächenaktivität, d.h. das unterschiedliche Vermögen der Moleküle, sich an der Oberfläche von Gasblasen anzureichern. Durch das Aufsteigen der Blasen in der Flüssigkeit werden daher die Moleküle mit der höheren Grenzflächenaktivität stärker in der Schaumschicht angereichert als die weniger stark grenzflächenaktiven Komponenten. Ziel der vorliegenden Dissertation ist es, den Prozess der Schaumfraktionierung hinsichtlich der Trennung von grenzflächenaktiven Molekülen zu analysieren. Die Bildung von Blasen und deren anschließendes Aufsteigen in der Lösung kann als wichtigstes Element in diesem Prozess angesehen werden. Es ist bekannt, dass die Geschwindigkeit aufsteigender Luftblasen in Wasser eine charakteristische Größe ist, die durch die Anwesenheit grenzflächenaktiver Stoffe (Tenside, Proteine) stark verringert wird. Die vorliegende Dissertation zeigt für das ausgewählte Protein ß-Lactoglobulin und für verschiedene Lebensmittel-Tenside, dass die Messung der Aufstiegsgeschwindigkeit von Luftblasen zur Beurteilung der Anreicherung dieser Moleküle an der Blasenoberfläche ausgezeichnet geeignet ist. Die experimentellen Ergebnisse bei verschiedenen Lösungsbedingungen, wie Konzentration von Protein bzw. Tensid, pH-Wert und Ionenstärke der Lösung, zeigen deutlich, dass die Anreicherung der Proteinmoleküle wesentlich stärker ist als die von Tensiden. Dies gilt auch für Tenside mit einer sehr hohen Grenzflächenaktivität, was im Wesentlichen durch die extrem feste (nahezu irreversible) Anreicherung der Proteinmoleküle zu erklären ist. Die erzielten experimentellen Ergebnisse dienen jetzt als Grundlage für die Weiterentwicklung der Theorie aufsteigender Blasen, die besonders von der Dynamik der Anreicherung der Moleküle geprägt ist. Neueste Untersuchungen haben gezeigt, dass auf der Grundlage dieser experimentellen Ergebnisse erstmals die Geschwindigkeitskonstanten der Anreicherung (Adsorption und Desorption) unabhängig voneinander ermittelt werden können. KW - adsorption KW - air-water interface KW - protein KW - foam KW - rising bubble KW - Adsorption KW - Wasser/Luft Grenzflächen KW - steigende Blasen KW - Schaum KW - Beta-Lactoglobulin Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94263 ER - TY - JOUR A1 - Hildebrand, Viet A1 - Laschewsky, Andre A1 - Wischerhoff, Erik T1 - Modulating the solubility of zwitterionic poly((3methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties JF - Polymer Chemistry N2 - Complementary to the well-established zwitterionic monomer 3-((3-methacrylamidopropyl) dimethylammonio) propane-1-sulfonate (SPP), the closely related monomers 2-hydroxy-3-((3-methacrylamidopropyl) dimethylammonio) propane-1-sulfonate (SHPP) and 4-((3-methacrylamidopropyl) dimethylammonio)butane- 1-sulfonate (SBP) were synthesised and polymerised by reversible addition-fragmentation chain transfer (RAFT) polymerisation, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar masses were characterised with respect to their solubility in water and aqueous salt solutions. Both poly(sulfobetaine)s show thermoresponsive behaviour in water, exhibiting phase separation at low temperatures and upper critical solution temperatures (UCST). For both polySHPP and polySBP, cloud points depend notably on the molar mass, and are much higher in D2O than in H2O. Also, the cloud points are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed nature of the spacer group separating the anionic and the cationic charges of the betaine moiety, on the other hand. As anticipated, the cloud points of polySBP are much higher than the ones of the analogous polySPP of identical molar mass. Surprisingly, the cloud points of polySHPP are also somewhat higher than the ones of their polySPP analogues, despite the additional hydrophilic hydroxyl group present in the spacer separating the ammonium and the sulfonate moieties. These findings point to a complicated interplay of the various hydrophilic components in polyzwitterions with respect to their overall hydrophilicity. Thus, the spacer group in the betaine moiety proves to be an effective additional molecular design parameter, apparently small variations of which strongly influence the phase behaviour of the polyzwitterions in specific aqueous environments. Y1 - 2016 U6 - https://doi.org/10.1039/c5py01642h SN - 1759-9954 SN - 1759-9962 VL - 7 SP - 731 EP - 740 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schmidt, Bernd A1 - Riemer, Martin T1 - Microwave-Promoted Deprenylation: Prenyl Ether as a Thermolabile Phenol Protecting Group JF - Synthesis N2 - para-Substituted aryl prenyl ethers undergo a deprenylation reaction upon microwave irradiation. This offers the opportunity to use a prenyl ether as a thermolabile protecting group in the synthesis of natural products with a chromone structure, which proceeds via a tandem deprenylation/6-endo-cyclization sequence. KW - microwave irradiation KW - phenols KW - chromenes KW - protecting groups KW - Claisen rearrangement Y1 - 2016 U6 - https://doi.org/10.1055/s-0035-1561366 SN - 0039-7881 SN - 1437-210X VL - 48 SP - 1399 EP - 1406 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Wuennemann, Patrick A1 - Noyong, Michael A1 - Kreuels, Klaus A1 - Bruex, Roland A1 - Gordiichuk, Pavlo A1 - van Rijn, Patrick A1 - Plamper, Felix A. A1 - Simon, Ulrich A1 - Böker, Alexander T1 - Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays JF - Macromolecular rapid communications N2 - Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from approximate to 1 mu m down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structures via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The conductivity measurements of the gold nanowires are performed in situ in the SEM, showing highly conductive gold leads. Hence, this method can be regarded as a facile nonlithographic top-down approach from micrometer-sized structures to nanometer-sized features. KW - 1D structures KW - Au nanoarrays KW - microgel KW - nanoimprint KW - lithography KW - thin films Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600287 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1446 EP - 1452 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Park, H. A1 - Walta, S. A1 - Rosencrantz, Ruben R. A1 - Koerner, A. A1 - Schulte, Christoph A1 - Elling, L. A1 - Richtering, Walter A1 - Böker, Alexander T1 - Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding JF - Polymer Chemistry N2 - We introduce a novel double-hydrophilic hydroxyethylmethacrylate (HEMA) based diblock glycopolymer which self-assembles into homogeneous spherical micellar structures in water. The micellar structure renders surface-oriented N-acetylglucocosamine (GlcNAc) sugar moieties for strong multivalent glycan-mediated lectin binding. Structural analysis and lectin binding is performed by microscopy methods, dynamic light scattering (DLS) and two-focus fluorescence correlation spectroscopy (2fFCS), revealing a novel micellar type of multivalent sugar binding scaffold with high potential for biomedical applications. Y1 - 2016 U6 - https://doi.org/10.1039/c5py00797f SN - 1759-9954 SN - 1759-9962 VL - 7 SP - 878 EP - 886 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Behrendt, Felix Nicolas A1 - Schlaad, Helmut T1 - Metathesis polymerization of cystine-based macrocycles N2 - Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached ∼80% in equilibrium and the produced poly(ester-amine-disulfide-alkene)s exhibited apparent molar masses (Mappw) of up to 80 kDa and dispersities (Đ) of ∼2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 329 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395080 ER - TY - JOUR A1 - Zhou, Qihui A1 - Wuennemann, Patrick A1 - Kuhn, Philipp Till A1 - de Vries, Joop A1 - Helmin, Marta A1 - Böker, Alexander A1 - van Kooten, Theo G. A1 - van Rijn, Patrick T1 - Mechanical Properties of Aligned Nanotopologies for Directing Cellular Behavior JF - Advanced materials interfaces N2 - Tailoring cell–surface interactions is important for the of design medical implants as well as regenerative medicine and tissue engineering materials. Here the single parameter system is transcended via translating hard nanotopology into soft polymeric hydrogel structures via hydrogel imprinting lithography. The response of these cells to the nanotopology of the same dimensions but with different mechanical properties displays unexpected behavior between “hard” tissue cells and “soft” tissue cells. Y1 - 2016 U6 - https://doi.org/10.1002/admi.201600275 SN - 2196-7350 VL - 3 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Liu, Bing A1 - Böker, Alexander T1 - Measuring rotational diffusion of colloidal spheres with confocal microscopy JF - Soft matter N2 - We report an experimental method to measure the translational and rotational dynamics of colloidal spheres in three dimensions with confocal microscopy and show that the experimental values reasonably agree with the theoretical values. This method can be extended to study rotational dynamics in concentrated colloidal systems and complex bio-systems. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01082b SN - 1744-683X SN - 1744-6848 VL - 12 SP - 6033 EP - 6037 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Soliveres, Santiago A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Boehm, Stefan A1 - Boerschig, Carmen A1 - Buscot, Francois A1 - Diekoetter, Tim A1 - Heinze, Johannes A1 - Hoelzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Mueller, Joerg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schoening, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Tuerke, Manfred A1 - Venter, Paul A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Locally rare species influence grassland ecosystem multifunctionality JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. KW - biodiversity KW - common species KW - ecosystem function KW - identity hypothesis KW - land use KW - multitrophic Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0269 SN - 0962-8436 SN - 1471-2970 VL - 371 SP - 3175 EP - 3185 PB - Royal Society CY - London ER - TY - GEN A1 - Schulze, Nicole A1 - Koetz, Joachim T1 - Kinetically Controlled Growth of Gold Nanotriangles in a Vesicular Template Phase by Adding a Strongly Alternating Polyampholyte N2 - This paper is focused on the temperature dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholin and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in presence of the polyampholyte at 45 °C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45 °C. Corresponding zeta potential measurements indicate that a temperature dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 271 KW - Polyampholytes KW - Nanotriangles KW - Kinetically controlled nanocrystal growth Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98380 ER - TY - JOUR A1 - Kovach, Ildiko A1 - Rumschöttel, Jens A1 - Friberg, Stig E. A1 - Koetz, Joachim T1 - Janus emulsion mediated porous scaffold bio-fabrication JF - Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces N2 - A three dimensional biopolymer network structure with incorporated nano-porous calcium phosphate (CaP) balls was fabricated by using gelatin-chitosan (GC) polymer blend and GC stabilized olive/silicone oil Janus emulsions, respectively. The emulsions were freeze-dried, and the oil droplets were washed out in order to prepare porous scaffolds with larger surface area. The morphology, pore size, chemical composition, thermal and swelling behavior was studied by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and micro-Differential Scanning Calorimetry (micro-DSC). Microscopic analysis confirmed that the pore size of the GC based sponges after freeze-drying may be drastically reduced by using Janus emulsions. Besides, the incorporation of nanoporous calcium phosphate balls is also lowering the pore size and enhancing thermal stability. (C) 2016 Elsevier B.V. All rights reserved. KW - Janus emulsions KW - Calcium phosphates KW - Gelatin-chitosan scaffolds Y1 - 2016 U6 - https://doi.org/10.1016/j.colsurfb.2016.05.018 SN - 0927-7765 SN - 1873-4367 VL - 145 SP - 347 EP - 352 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pape, Simon A1 - Wessig, Pablo A1 - Brunner, Heiko T1 - Iron Trichloride and Air Mediated Guanylation of Acylthioureas. An Ecological Route to Acylguanidines: Scope and Mechanistic Insights JF - The journal of organic chemistry N2 - Recently we introduced iron trichloride as an environmentally benign and cost-efficient reagent for the synthesis of N-benzoylguanidines. This highly attractive synthetic approach grants access to a broad spectrum of N-benzoylguanidines under mild conditions in short reaction times. In this work we present an extended scope of Our methodology along with the results obtained from mechanistic studies via in situ IR spectroscopy in combination with LC (liquid chromatography)-MS analyses. On the basis of these new mechanistic insights we were able to optimize the synthetic protocol and to develop an alternative mechanistic proposal. In this context the symbiotic roles of iron trithloride and oxygen in the guanylation process are highlighted. Y1 - 2016 U6 - https://doi.org/10.1021/acs.joc.6b00600 SN - 0022-3263 VL - 81 SP - 4701 EP - 4712 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Villatoro, José Andrés A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Weber, Marcus A1 - Riedel, Jens A1 - Löhmannsröben, Hans-Gerd T1 - IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector JF - International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry N2 - Infrared matrix-assisted laser dispersion and ionization (IR-MALDI) in combination with ion mobility (IM) spectrometry enables the direct analysis of biomolecules in aqueous solution. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse, which disperses the liquid as vapor, nano-and micro-droplets. The ionization process is characterized initially by a broad spatial distribution of the ions, which is a result of complex fluid dynamics and desolvation kinetics. These processes have a profound effect on the shape and width of the peaks in the IM spectra. In this work, the transport of ions by the phase explosion-induced shockwave could be studied independently from the transport by the electric field. The shockwave-induced mean velocities of the ions at different time scales were determined through IM spectrometry and shadowgraphy. The results show a deceleration of the ions from 118 m.s(-1) at a distance of 400 mu m from the liquid surface to 7.1 m.s(-1) at a distance of 10 mm, which is caused by a pile-up effect. Furthermore, the desolvation kinetics were investigated and a first-order desolvation constant of 325 +/- 50 s(-1) was obtained. In the second part, the IR-MALDI-IM spectrometer is used as an HPLC detector for the two-dimensional separation of a pesticide mixture. KW - Ion mobility spectrometry KW - IR-MALDI KW - Shadowgraphy KW - Laser KW - Imaging KW - HPLC Y1 - 2016 U6 - https://doi.org/10.1007/s12127-016-0208-1 SN - 1435-6163 SN - 1865-4584 VL - 19 SP - 197 EP - 207 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Villatoro, José Andrés A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Riedel, Jens A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - IR-MALDI ion mobility spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis N2 - The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (lambda = 2.94 mu m, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 mu M as well as linear dynamic ranges of 2-3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures. KW - Ion mobility spectrometry KW - IR-MALDI KW - Laser Y1 - 2016 U6 - https://doi.org/10.1007/s00216-016-9739-x SN - 1618-2642 SN - 1618-2650 VL - 408 SP - 6259 EP - 6268 PB - Springer CY - Heidelberg ER - TY - THES A1 - Pampel, Jonas T1 - Ionothermal carbon materials T1 - Ionothermale Kohlenstoffmaterialien BT - advanced synthesis and electrochemical applications BT - erweiterte Synthese und elektrochemische Anwendungen N2 - Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector. N2 - Alternative Konzepte für Energiespeicherung und –umwandlung müssen entwickelt, optimiert und praktisch angewendet werden, um den Traum einer erdölunabhängigen Energiewirtschaft zu realisieren. Poröse Kohlenstoffmaterialien spielen eine bedeutende Rolle in vielen energierelevanten Anwendungen. Speziell die porösen Eigenschaften des Kohlenstoffs, wie die spezifische Oberfläche (engl. specific surface area: SSA), das totale Porenvolumen (engl. total pore volume: TPV) und die Porengrößenverteilung, sind von großer Bedeutung für eine Maximierung der Leistung in der Endanwendung. Die vorliegende Arbeit konzentrierte sich auf den Einsatz und die Weiterentwicklung der ionothermalen Karbonisierung ausgehend von biomassebasierten Präkursoren, um eine nachhaltige Synthese hochporöser Kohlenstoffe mit einstellbarer Porosität zu ermöglichen. In der ionothermalen Synthese fungieren Salzschmelzen simultan als Lösungsmittel und Porogen während der Karbonisierung. Als Salzphase werden hierbei häufig eutektische Zinkchloridhaltige binäre Salzmischungen verwendet. In der vorliegenden Arbeit wurde im ersten Schritt die Variation der molaren Zusammensetzung der binären Salzphase als neue Methode eingeführt, um eine kontinuierliche Veränderung der Porosität des synthetisierten Kohlenstoffs zu bewirken. Diese Methode erlaubte die Synthese von Glukose-basierten Kohlenstoffen mit einstellbarer SSA zwischen ~ 900 und ~ 2100 m2 g-1. Des Weiteren wurde die Nukleinbase Adenin als Präkursor verwendet, wodurch eine Stickstoffdotierung des finalen Kohlenstoffmaterials erreicht wurde. Die damit einhergehende Veränderung der chemischen Eigenschaften des Materials führt zu neuen Anwendungsbereichen. Stickstoffdotierte Kohlen (engl. nitrogen doped carbons: NDCs) können beispielsweise die Sauerstoffreduktion katalysieren, welche auf der Kathodenseite der Brennstoffzelle abläuft. Das entwickelte Verfahren zur Einstellung der Porosität erlaubte einerseits die Synthese von Adenin-basierten NDCs mit beeindruckenden SSAs von bis zu 2900 m2 g-1 und extrem hohen TPVs von bis zu 5,19 cm3 g-1. Andererseits konnte der Einfluss der Porosität auf die Sauerstoffreduktion direkt untersucht und infolge dessen die Porosität der NDCs für diese Anwendung optimiert werden. Im zweiten Schritt wurde ein neues Verfahren entwickelt, um mittels der rotierenden Scheibenelektrode den noch nicht geklärten Mechanismus der Sauerstoffreduktion zu untersuchen, vor allem in Bezug auf edelmetallfreie Katalysatoren. Die Ergebnisse zeigten, dass der Reaktionsverlauf der Sauerstoffreduktion pH-Wert abhängig ist. Diese deutet auf verschiedene aktive Spezies in Abhängigkeit des pH-Werts hin. Im dritten Schritt wurde der gezielte Einsatz von hydrierten Salzen (Magnesium- und Calciumchlorid) als Salzphase für die ionothermale Synthese untersucht. Es konnte gezeigt werden, dass Hydrate einen sekundären Templatierungseffekt erlauben, was anhand der Koexistenz von flüssigen und festen Salzphasen erklärt werden konnte. Hierdurch konnten faserartige NDC-Materialien mit SSAs von bis zu 2780 m2 g-1 und TPVs von bis zu 3,86 cm3 g-1 synthetisiert werden. Des Weiteren wurde anhand dieser NDC-Materialien erfolgreich gezeigt, dass es möglich ist sauerstoffreduktionsaktive Spezies durch einfache Metallierung mit Eisenionen bei niedrigen Temperaturen einzuführen. Zusammenfassend konnte die vorliegende Arbeit die kostengünstige und nachhaltige Synthese hochporöser Materialien mit einstellbarer Porosität zeigen, welche in energierelevanten Bereichen eingesetzt werden können. Hierdurch kann die notwendige Erweiterung des Sektors der erneuerbaren Energien unterstützt werden. KW - porous materials KW - nitrogen doped carbons KW - ORR KW - oxygen reduction reaction KW - electrocatalysis KW - poröse Materialien KW - stickstoffdotierte Kohlenstoffe KW - ORR KW - Sauerstoff Reduktion KW - Elektrokatalyse KW - ionothermal synthesis KW - ionothermale Synthese Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101323 ER - TY - JOUR A1 - Sun, Haitao A1 - Ryno, Sean A1 - Zhong, Cheng A1 - Ravva, Mahesh Kumar A1 - Sun, Zhenrong A1 - Körzdörfer, Thomas A1 - Bredas, Jean-Luc T1 - Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approach JF - Journal of chemical theory and computation N2 - We propose a new methodology for the first principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a nonempirical, optimally tuned range separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values, as well as with the results of many-body perturbation theory-within the GW approximation at a fraction of the computational cost. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to crystal phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jctc.6b00225 SN - 1549-9618 SN - 1549-9626 VL - 12 SP - 2906 EP - 2916 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Baier, Heiko A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles. KW - Carbene ligands KW - Heck reaction KW - Palladium KW - Selenium KW - C-C coupling Y1 - 2016 U6 - https://doi.org/10.1002/zaac.201500625 SN - 0044-2313 SN - 1521-3749 VL - 642 SP - 140 EP - 147 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Draffehn, Soeren A1 - Eichhorst, Jenny A1 - Wiesner, Burkhard A1 - Kumke, Michael Uwe T1 - Insight into the Modification of Polymeric Micellar and Liposomal Nanocarriers by Fluorescein-Labeled Lipids and Uptake-Mediating Lipopeptides JF - Langmuir N2 - Encapsulation of diagnostic and therapeutic compounds in transporters improves their delivery to the point of need. An even more efficient treatment of diseases can be achieved using carriers with targeting or protecting moieties. In the present work, we investigated micellar and liposomal nanocarriers modified with fluorescein, peptides, and polymers that are covalently bound to fatty acids or phospholipids to ensure a self-driven incorporation into the micelles or liposomes. First, we characterized the photophysics of the fluorescent probes in the absence and in the presence of nanocarriers. Changes in the fluorescence decay time, quantum yield, and intensity of a fluorescein-labeled fatty acid (fluorescein-labeled palmitic acid [fPA]) and a fluorescein-labeled lipopeptide (P2fA2) were found. By exploiting these changes, we investigated a lipopeptide (P2A2 as an uptake-mediating unit) in combination with different nanocarriers (micelles and liposomes) and determined the corresponding association constant K-ass values, which were found to be very high. In addition, the mobility of fPA was exploited using fluorescence correlation spectroscopy (FCS) and fluorescence depolarization (FD) experiments to characterize the nanocarriers. Cellular uptake experiments with mouse brain endothelial cells provided information on the uptake behavior of liposomes modified by uptake-mediating P2A2 and revealed differences in the uptake behavior between pH-sensitive and pH-insensitive liposomes. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b01487 SN - 0743-7463 VL - 32 SP - 6928 EP - 6939 PB - American Chemical Society CY - Heidelberg ER -