TY - JOUR A1 - Messerschmidt, Katrin A1 - Hochrein, Lena A1 - Dehm, Daniel A1 - Schulz, Karina A1 - Mueller-Roeber, Bernd T1 - Characterizing seamless ligation cloning extract for synthetic biological applications JF - Analytical biochemistry : methods in the biological sciences N2 - Synthetic biology aims at designing and engineering organisms. The engineering process typically requires the establishment of suitable DNA constructs generated through fusion of multiple protein coding and regulatory sequences. Conventional cloning techniques, including those involving restriction enzymes and ligases, are often of limited scope, in particular when many DNA fragments must be joined or scar-free fusions are mandatory. Overlap-based-cloning methods have the potential to overcome such limitations. One such method uses seamless ligation cloning extract (SLiCE) prepared from Escherichia coli cells for straightforward and efficient in vitro fusion of DNA fragments. Here, we systematically characterized extracts prepared from the unmodified E. coli strain DH10B for SLiCE-mediated cloning and determined DNA sequence-associated parameters that affect cloning efficiency. Our data revealed the virtual absence of length restrictions for vector backbone (up to 13.5 kbp) and insert (90 bp to 1.6 kbp). Furthermore, differences in GC content in homology regions are easily tolerated and the deletion of unwanted vector sequences concomitant with targeted fragment insertion is straightforward. Thus, SLiCE represents a highly versatile DNA fusion method suitable for cloning projects in virtually all molecular. and synthetic biology projects. (C) 2016 Elsevier Inc. All rights reserved. KW - SLiCE KW - Seamless ligation cloning KW - Homologous recombination KW - Synthetic biology Y1 - 2016 U6 - https://doi.org/10.1016/j.ab.2016.05.029 SN - 0003-2697 SN - 1096-0309 VL - 509 SP - 24 EP - 32 PB - Elsevier CY - San Diego ER -