TY - THES A1 - Wolf, Mathias Johannes T1 - The role of partial melting on trace element and isotope systematics of granitic melts T1 - Die Bedeutung partieller Schmelzbildung für die Spurenelement- und Isotopensystematik granitischer Schmelzen N2 - Partial melting is a first order process for the chemical differentiation of the crust (Vielzeuf et al., 1990). Redistribution of chemical elements during melt generation crucially influences the composition of the lower and upper crust and provides a mechanism to concentrate and transport chemical elements that may also be of economic interest. Understanding of the diverse processes and their controlling factors is therefore not only of scientific interest but also of high economic importance to cover the demand for rare metals. The redistribution of major and trace elements during partial melting represents a central step for the understanding how granite-bound mineralization develops (Hedenquist and Lowenstern, 1994). The partial melt generation and mobilization of ore elements (e.g. Sn, W, Nb, Ta) into the melt depends on the composition of the sedimentary source and melting conditions. Distinct source rocks have different compositions reflecting their deposition and alteration histories. This specific chemical “memory” results in different mineral assemblages and melting reactions for different protolith compositions during prograde metamorphism (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). These factors do not only exert an important influence on the distribution of chemical elements during melt generation, they also influence the volume of melt that is produced, extraction of the melt from its source, and its ascent through the crust (Le Breton and Thompson, 1988). On a larger scale, protolith distribution and chemical alteration (weathering), prograde metamorphism with partial melting, melt extraction, and granite emplacement are ultimately depending on a (plate-)tectonic control (Romer and Kroner, 2016). Comprehension of the individual stages and their interaction is crucial in understanding how granite-related mineralization forms, thereby allowing estimation of the mineralization potential of certain areas. Partial melting also influences the isotope systematics of melt and restite. Radiogenic and stable isotopes of magmatic rocks are commonly used to trace back the source of intrusions or to quantify mixing of magmas from different sources with distinct isotopic signatures (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). These applications are based on the fundamental requirement that the isotopic signature in the melt reflects that of the bulk source from which it is derived. Different minerals in a protolith may have isotopic compositions of radiogenic isotopes that deviate from their whole rock signature (Ayres and Harris, 1997; Knesel and Davidson, 2002). In particular, old minerals with a distinct parent-to-daughter (P/D) ratio are expected to have a specific radiogenic isotope signature. As the partial melting reaction only involves selective phases in a protolith, the isotopic signature of the melt reflects that of the minerals involved in the melting reaction and, therefore, should be different from the bulk source signature. Similar considerations hold true for stable isotopes. N2 - Partielle Schmelzbildung ist ein zentraler Prozess für die geochemische Differentiation der Erdkruste (Vielzeuf et al., 1990). Die Umverteilung chemischer Elemente während der Schmelzbildung beeinflusst die Zusammensetzung der oberen und unteren Erdkruste entscheidend und stellt einen Mechanismus zur Konzentration und zum Transport chemischer Elemente dar. Das Verständnis der diversen Prozesse und der kontrollierenden Faktoren ist deshalb nicht nur von wissenschaftlichem Interesse sondern auch von ökonomischer Bedeutung um die Nachfrage für seltene Metalle zu decken. Die Umverteilung von Haupt- und Spurenelementen während des partiellen Aufschmelzens ist ein entscheidender Schritt für das Verständnis wie sich granitgebundene Lagerstätten bilden (Hedenquist and Lowenstern, 1994). Die Schmelzbildung und die Mobilisierung von Erz-Elementen (z. B. Sn, W, Nb, Ta) in die Schmelze hängt von der Zusammensetzung der sedimentären Ausgangsgesteine und den Schmelzbedingungen ab. Verschiedene Ausgangsgesteine haben aufgrund ihrer Ablagerungs- und Verwitterungsgeschichte unterschiedliche Zusammensetzungen. Dieses spezifische geochemische „Gedächtnis“ resultiert in unterschiedlichen Mineralparagenesen und Schmelzreaktionen in verschiedenen Ausgangsgesteinen während der prograden Metamorphose. (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). Diese Faktoren haben nicht nur einen wichtigen Einfluss auf die Verteilung chemischer Elemente während der Schmelzbildung, sie beeinflussen auch das Volumen an Schmelze, die Extraktion der Schmelze aus dem Ausgangsgestein und deren Aufstieg durch die Erdkruste (Le Breton and Thompson, 1988). Auf einer grösseren Skala unterliegen die Verteilung der Ausgangsgesteine und deren chemische Alteration (Verwitterung), die prograde Metamorphose mit partieller Schmelzbildung, Schmelzextraktion und die Platznahme granitischer Intrusionen einer plattentektonischen Kontrolle. Das Verständnis der einzelnen Schritte und deren Wechselwirkungen ist entscheidend um zu verstehen wie granitgebunden Lagerstätten entstehen und erlaubt es, das Mineralisierungspotential bestimmter Gebiete abzuschätzen. Partielles Aufschmelzen beeinflusst auch die Isotopensystematik der Schmelze und des Restites. Die Zusammensetzungen radiogener und stabiler Isotopen von magmatischen Gesteinen werden im Allgemeinen dazu verwendet um deren Ursprungsgesteine zu identifizieren oder um Mischungsprozesses von Magmen unterschiedlichen Ursprunges zu quantifizieren (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). Diese Anwendungen basieren auf der fundamentalen Annahme, dass die Isotopenzusammensetzung der Schmelze derjenigen des Ausgangsgesteines entspricht. Unterschiedliche Minerale in einem Gestein können unterschiedliche, vom Gesamtgestein abweichende, Isotopenzusammensetzungen haben (Ayres and Harris, 1997; Knesel and Davidson, 2002). Insbesondere für alte Minerale, mit einem unterschiedlichen Mutter-Tochter Nuklidverhältnis, ist eine spezifische Isotopenzusammensetzung zu erwarten. Da im partiellen Schmelzprozess nur bestimmte Minerale eines Gesteines involviert sind, entspricht die Isotopenzusammensetzung der Schmelze derjenigen der Minerale welche an der Schmelzreaktion teilnehmen. Daher sollte die Isotopenzusammensetzung der Schmelze von derjenigen des Ursprungsgesteines abweichen. Ähnliche Überlegungen treffen auch für stabile Isotopen zu. KW - geochemistry KW - trace elements KW - radiogenic isotopes KW - stable isotopes KW - resources KW - Sn Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423702 ER - TY - THES A1 - Böhme, Dimo T1 - EU-Russia energy relations: What chance for solutions? : A focus on the natural gas sector T1 - Energiebeziehungen EU-Russland : Welche Lösungen sind möglich? N2 - Public debate about energy relations between the EU and Russia is distorted. These distortions present considerable obstacles to the development of true partnership. At the core of the conflict is a struggle for resource rents between energy producing, energy consuming and transit countries. Supposed secondary aspects, however, are also of great importance. They comprise of geopolitics, market access, economic development and state sovereignty. The European Union, having engaged in energy market liberalisation, faces a widening gap between declining domestic resources and continuously growing energy demand. Diverse interests inside the EU prevent the definition of a coherent and respected energy policy. Russia, for its part, is no longer willing to subsidise its neighbouring economies by cheap energy exports. The Russian government engages in assertive policies pursuing Russian interests. In so far, it opts for a different globalisation approach, refusing the role of mere energy exporter. In view of the intensifying struggle for global resources, Russia, with its large energy potential, appears to be a very favourable option for European energy supplies, if not the best one. However, several outcomes of the strategic game between the two partners can be imagined. Engaging in non-cooperative strategies will in the end leave all stakeholders worse-off. The European Union should therefore concentrate on securing its partnership with Russia instead of damaging it. Stable cooperation would need the acceptance that the partner may pursue his own goals, which might be different from one’s own interests. The question is, how can a sustainable compromise be found? This thesis finds that a mix of continued dialogue, a tit for tat approach bolstered by an international institutional framework and increased integration efforts appears as a preferable solution. N2 - Die öffentliche Debatte über die Energiebeziehungen Russlands und der EU ist verzerrt. Diese Verzerrungen verhindern die Entwicklung einer wirklichen Energiepartnerschaft. Kern des Konflikts ist ein Kampf um Rohstoffrenten zwischen Energie produzierenden, Energie konsumierenden und Transitstaaten. Dabei sind scheinbar nebensächliche Aspekte wie geopolitische Überlegungen, Marktzutrittsbedingungen, wirtschaftliche Entwicklung und staatliche Souveränität, die kaum Beachtung finden, von umso größerer Bedeutung. Die EU, die ihre Energiemärkte liberalisiert, sieht sich einer wachsenden Lücke zwischen abnehmenden eigenen Ressourcen und stetig steigender Energienachfrage gegenüber. Vielfältige Interessen innerhalb der Union verhindern die Definition einer kohärenten und allgemein akzeptierten Energiepolitik. Russland seinerseits ist nicht länger gewillt, die Volkswirtschaften seiner Nachbarstaaten mit billigen Energieexporten zu subventionieren. Die russische Regierung verfolgt russische Interessen, und tut dies durchaus mit Nachdruck. Insofern, als dass sie für Russland selbst mehr als die Rolle eines bloßen Energieexporteurs wünscht, verfolgt sie auch eine eigene Herangehensweise an die Globalisierung. Vor dem Hintergrund des zunehmenden globalen Wettstreits um Ressourcen erscheint Russland mit seinem großen Energiepotential als sehr vorteilhafte, wenn nicht sogar die beste Option für die europäische Energieversorgung. In einem solchen strategischen Spiel der beiden Partner sind grundsätzlich verschiedene Ergebnisse vorstellbar. Wählen beide nichtkooperative Strategien, so verlieren letztlich alle Beteiligten. Die EU sollte sich deshalb darauf konzentrieren, ihre Partnerschaft mit Russland zu intensivieren, anstatt sie zu beschädigen. Eine verlässliche Kooperation setzt dabei die Akzeptanz voraus, dass der Partner seine eigenen Ziele verfolgt, die durchaus verschieden von EU-Interessen sein können. Die Frage ist, wie ein dauerhaft tragfähiger Kompromiss gefunden werden kann. Diese Arbeit argumentiert im Sinne einer Kombination aus fortgeführtem Dialog, einer tit-for-tat Strategie, die von einem internationalen institutionellen Rahmenwerk begleitet wird sowie verstärkten Integrationsbemühungen. KW - EU KW - Russland KW - Energie KW - Gas KW - Kooperation KW - Rohstoffe KW - EU KW - Russia KW - energy KW - gas KW - cooperation KW - resources Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50210 SN - 978-3-86956-120-2 PB - Universitätsverlag Potsdam CY - Potsdam ER -