TY - GEN A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Network-based flow accumulation for point clouds BT - Facet-Flow Networks (FFN) T2 - Remote Sensing for Agriculture, Ecosystems, and Hydrology XX N2 - Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic. KW - lidar KW - point clouds KW - stochastic filtering KW - flow accumulation KW - drainage networks KW - uncertainty quantification KW - TIN KW - DEM Y1 - 2018 SN - 978-1-5106-2150-3 U6 - https://doi.org/10.1117/12.2318424 SN - 0277-786X SN - 1996-756X VL - 10783 PB - SPIE-INT Society of Photo-Optical Instrumentation Engineers CY - Bellingham ER - TY - JOUR A1 - Döllner, Jürgen Roland Friedrich T1 - Geospatial artificial intelligence BT - potentials of machine learning for 3D point clouds and geospatial digital twins JF - Journal of photogrammetry, remote sensing and geoinformation science : PFG : Photogrammetrie, Fernerkundung, Geoinformation N2 - Artificial intelligence (AI) is changing fundamentally the way how IT solutions are implemented and operated across all application domains, including the geospatial domain. This contribution outlines AI-based techniques for 3D point clouds and geospatial digital twins as generic components of geospatial AI. First, we briefly reflect on the term "AI" and outline technology developments needed to apply AI to IT solutions, seen from a software engineering perspective. Next, we characterize 3D point clouds as key category of geodata and their role for creating the basis for geospatial digital twins; we explain the feasibility of machine learning (ML) and deep learning (DL) approaches for 3D point clouds. In particular, we argue that 3D point clouds can be seen as a corpus with similar properties as natural language corpora and formulate a "Naturalness Hypothesis" for 3D point clouds. In the main part, we introduce a workflow for interpreting 3D point clouds based on ML/DL approaches that derive domain-specific and application-specific semantics for 3D point clouds without having to create explicit spatial 3D models or explicit rule sets. Finally, examples are shown how ML/DL enables us to efficiently build and maintain base data for geospatial digital twins such as virtual 3D city models, indoor models, or building information models. N2 - Georäumliche Künstliche Intelligenz: Potentiale des Maschinellen Lernens für 3D-Punktwolken und georäumliche digitale Zwillinge. Künstliche Intelligenz (KI) verändert grundlegend die Art und Weise, wie IT-Lösungen in allen Anwendungsbereichen, einschließlich dem Geoinformationsbereich, implementiert und betrieben werden. In diesem Beitrag stellen wir KI-basierte Techniken für 3D-Punktwolken als einen Baustein der georäumlichen KI vor. Zunächst werden kurz der Begriff "KI” und die technologischen Entwicklungen skizziert, die für die Anwendung von KI auf IT-Lösungen aus der Sicht der Softwaretechnik erforderlich sind. Als nächstes charakterisieren wir 3D-Punktwolken als Schlüsselkategorie von Geodaten und ihre Rolle für den Aufbau von räumlichen digitalen Zwillingen; wir erläutern die Machbarkeit der Ansätze für Maschinelles Lernen (ML) und Deep Learning (DL) in Bezug auf 3D-Punktwolken. Insbesondere argumentieren wir, dass 3D-Punktwolken als Korpus mit ähnlichen Eigenschaften wie natürlichsprachliche Korpusse gesehen werden können und formulieren eine "Natürlichkeitshypothese” für 3D-Punktwolken. Im Hauptteil stellen wir einen Workflow zur Interpretation von 3D-Punktwolken auf der Grundlage von ML/DL-Ansätzen vor, die eine domänenspezifische und anwendungsspezifische Semantik für 3D-Punktwolken ableiten, ohne explizite räumliche 3D-Modelle oder explizite Regelsätze erstellen zu müssen. Abschließend wird an Beispielen gezeigt, wie ML/DL es ermöglichen, Basisdaten für räumliche digitale Zwillinge, wie z.B. für virtuelle 3D-Stadtmodelle, Innenraummodelle oder Gebäudeinformationsmodelle, effizient aufzubauen und zu pflegen. KW - geospatial artificial intelligence KW - machine learning KW - deep learning KW - 3D KW - point clouds KW - geospatial digital twins KW - 3D city models Y1 - 2020 U6 - https://doi.org/10.1007/s41064-020-00102-3 SN - 2512-2789 SN - 2512-2819 VL - 88 IS - 1 SP - 15 EP - 24 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Rheinwahlt, Aljoscha A1 - Goswami, Bedartha A1 - Bookhagen, Bodo T1 - A network-based flow accumulation algorithm for point clouds BT - Facet-Flow Networks (FFNs) JF - Journal of geophysical research : Earth surface N2 - Flow accumulation algorithms estimate the steady state of flow on real or modeled topographic surfaces and are crucial for hydrological and geomorphological assessments, including delineation of river networks, drainage basins, and sediment transport processes. Existing flow accumulation algorithms are typically designed to compute flows on regular grids and are not directly applicable to arbitrarily sampled topographic data such as lidar point clouds. In this study we present a random sampling scheme that generates homogeneous point densities, in combination with a novel flow path tracing approach-the Facet-Flow Network (FFN)-that estimates flow accumulation in terms of specific catchment area (SCA) on triangulated surfaces. The random sampling minimizes biases due to spatial sampling and the FFN allows for direct flow estimation from point clouds. We validate our approach on a Gaussian hill surface and study the convergence of its SCA compared to the analytical solution. Here, our algorithm outperforms the multiple flow direction algorithm, which is optimized for divergent surfaces. We also compute the SCA of a 6-km(2)-steep, vegetated catchment on Santa Cruz Island, California, based on airborne lidar point-cloud data. Point-cloud-based SCA values estimated by our method compare well with those estimated by the D-infinity or multiple flow direction algorithm on gridded data. The advantage of computing SCA from point clouds becomes relevant especially for divergent topography and for small drainage areas: These are depicted with much more detail due to the higher sampling density of point clouds. KW - point clouds KW - drainage networks KW - lidar KW - tin KW - surface runoff KW - spatial sampling Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004827 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 7 SP - 2013 EP - 2033 PB - American Geophysical Union CY - Washington ER -