TY - GEN A1 - Nguyen, Vu Hoa A1 - Richert, S. A1 - Park, Hyunji A1 - Böker, Alexander A1 - Schnakenberg, Uwe T1 - Single interdigital transducer as surface acoustic wave impedance sensor T2 - Biosensors N2 - Surface acoustic wave (SAW) devices are well-known for gravimetric sensor applications. In biosensing applications, chemical-and biochemically evoked adsorption processes at surfaces are detected in liquid environments using delay-line or resonator sensor configurations, preferably in combination with appropriate microfluidic devices. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital electrode transducer (IDT) simultaneously as SAW generator and sensor element. It is shown that the amplitude of the reflected S-11 signal directly depends on the input impedance of the SAW device. The input impedance is strongly influenced by mass adsorption which causes a characteristic and measurable impedance mismatch. KW - SAW impedance sensor KW - microfluidic KW - PHEMA Y1 - 2017 U6 - https://doi.org/10.1016/j.protcy.2017.04.032 SN - 2212-0173 VL - 27 SP - 70 EP - 71 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Paeschke, Manfred A1 - Wollenberger, Ursula A1 - Köhler, C. A1 - Lisec, T. A1 - Schnakenberg, Uwe A1 - Wagner, B. T1 - Properties of interdigital electrode arrays with different geometries Y1 - 1995 ER - TY - JOUR A1 - Rosencrantz, Ruben R. A1 - Vu Hoa Nguyen, A1 - Park, Hyunji A1 - Schulte, Christine A1 - Böker, Alexander A1 - Schnakenberg, Uwe A1 - Elling, Lothar T1 - Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis N2 - A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy. KW - Localized surface plasmon resonance KW - Glycopolymer brush KW - Microfluidics KW - Bacterial toxin KW - Glycosyltransferase KW - Biosensors Y1 - 2016 U6 - https://doi.org/10.1007/s00216-016-9667-9 SN - 1618-2642 SN - 1618-2650 VL - 408 SP - 5633 EP - 5640 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Garakani, Tayebeh Mirzaei A1 - Liu, Zhanzhi A1 - Glebe, Ulrich A1 - Gehrmann, Julia A1 - Lazar, Jaroslav A1 - Mertens, Marie Anna Stephanie A1 - Möller, Mieke A1 - Hamzelui, Niloofar A1 - Zhu, Leilei A1 - Schnakenberg, Uwe A1 - Böker, Alexander A1 - Schwaneberg, Ulrich T1 - In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach JF - ACS applied materials & interfaces N2 - Synthosomes are polymer vesicles with trans membrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest beta-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Delta 1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA Delta CVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes. KW - synthosomes KW - solid-supported biomimetic membranes KW - polymersome spreading KW - electrochemical impedance spectroscopy KW - FhuA Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b09302 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 32 SP - 29276 EP - 29289 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wagner, Tom A1 - Lazar, Jaroslav A1 - Schnakenberg, Uwe A1 - Böker, Alexander T1 - In situ Electrothemical Impedance Spectroscopy of Electrostatically Driven Selective Gold Nanoparticle Adsorption on Block Copolymer Lamellae JF - Trials N2 - Electrostatic attraction between charged nano particles and oppositely charged nanopatterned polymeric films enables tailored structuring of functional nanoscopic surfaces. The bottom-up fabrication of organic/inorganic composites for example bears promising potential toward cheap fabrication of catalysts, optical sensors, and the manufacture of miniaturized electric circuitry. However, only little is known about the time-dependent adsorption behavior and the electronic or ionic charge transfer in the film bulk and at interfaces during nanoparticle assembly via electrostatic interactions. In situ electrochemical impedance spectroscopy (EIS) in combination with a microfluidic system for fast and reproducible liquid delivery was thus applied to monitor the selective deposition of negatively charged gold nanoparticles on top of positively charged poly(2-vinylpyridinium) (qP2VP) domains of phase separated lamellar poly(styrene)-block-poly(2-vinylpyridinium) (PS-b-qP2VP) diblock copolymer thin films. The acquired impedance data delivered information with respect to interfacial charge alteration, ionic diffusion, and the charge dependent nanoparticle adsorption kinetics, considering this yet unexplored system. We demonstrate that the selective adsorption of negatively charged gold nanoparticles (AuNPs) on positively charged qP2VP domains of lamellar PS-b-qP2VP thin films can indeed be tracked by EIS. Moreover, we show that the nanoparticle adsorption kinetics and the nanoparticle packing density are functions of the charge density in the qP2VP domains. KW - impedance spectroscopy KW - block copolymers KW - nanoparticles KW - electrostatics KW - adsorption kinetics Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b07708 SN - 1944-8244 VL - 8 SP - 27282 EP - 27290 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Paeschke, Manfred A1 - Wollenberger, Ursula A1 - Uhlig, A. A1 - Schnakenberg, Uwe A1 - Wagner, B. A1 - Hintsche, R. T1 - A stacked multichannel amperometric detection system Y1 - 1995 ER -