TY - JOUR A1 - Poppenhäger, Katja A1 - Ketzer, Laura A1 - Mallonn, Matthias T1 - X-ray irradiation and evaporation of the four young planets around V1298 Tau JF - Monthly notices of the Royal Astronomical Society N2 - Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log L-X [erg s(-1)] = 30.1 and has a mean coronal temperature of approximate to 9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass-radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr. KW - planets and satellites: atmospheres KW - planet-star interactions KW - stars: activity KW - stars: individual: V1298 Tau KW - X-rays: stars Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa1462 SN - 0035-8711 SN - 1365-2966 VL - 500 IS - 4 SP - 4560 EP - 4572 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Alexoudi, Xanthippi A1 - Mallonn, Matthias A1 - Keles, Engin A1 - Poppenhäger, Katja A1 - von Essen, Carolina A1 - Strassmeier, Klaus T1 - Role of the impact parameter in exoplanet transmission spectroscopy JF - Astronomy and astrophysics : an international weekly journal N2 - Context Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. Aims We investigate the dependence of the estimated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. Methods We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter b. First, we performed a qualitative study to illustrate the effect by presenting the changes in the transmission spectrum slope with different deviations of b. Then, we quantified these variations by creating an error envelope (for centrally transiting, off-center, and grazing systems) based on a derived typical uncertainty on b from the literature. Finally, we compared the variations in the transmission spectra for different spectral types of host stars. Results Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing b values. Variations of b by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on b corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. Conclusions We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere. KW - planets and satellites: atmospheres KW - planets and satellites: gaseous KW - planets Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-605378 SN - 0004-6361 SN - 1432-0746 VL - 640 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Keles, Engin A1 - Kitzmann, Daniel A1 - Mallonn, Matthias A1 - Alexoudi, Xanthippi A1 - Fossati, Luca A1 - Pino, Lorenzo A1 - Seidel, Julia Victoria A1 - Caroll, Thorsten A. A1 - Steffen, M. A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Strassmeier, Klaus G. A1 - von Essen, Carolina A1 - Nascimbeni, Valerio A1 - Turner, Jake D. T1 - Probing the atmosphere of HD189733b with the Na i and K i lines JF - Monthly Notices of the Royal Astronomical Society N2 - High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high-altitude absorption, e.g. from resonant sodium (Na i) and potassium (K i) lines. We resolve the atmospheric K i absorption on HD189733b with the aim to compare the resolved K i line and previously obtained high-resolution Na i-D line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of ∼10 km/s for the Na i-D lines and only a few km/s for the K i line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K i or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines. Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa2435 VL - 498 IS - 1 SP - 1033 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Mallonn, Matthias T1 - Ground-based transmission spectroscopy of three inflated Hot Jupiter exoplanets T1 - Bodengebundene Transmissionsspektroskopie von drei ausgedehnten Hot Jupiter Exoplaneten N2 - The characterization of exoplanets is a young and rapidly expanding field in astronomy. It includes a method called transmission spectroscopy that searches for planetary spectral fingerprints in the light received from the host star during the event of a transit. This techniques allows for conclusions on the atmospheric composition at the terminator region, the boundary between the day and night side of the planet. Observationally a big challenge, first attempts in the community have been successful in the detection of several absorption features in the optical wavelength range. These are for example a Rayleighscattering slope and absorption by sodium and potassium. However, other objects show a featureless spectrum indicative for a cloud or haze layer of condensates masking the probable atmospheric layers. In this work, we performed transmission spectroscopy by spectrophotometry of three Hot Jupiter exoplanets. When we began the work on this thesis, optical transmission spectra have been available for two exoplanets. Our main goal was to advance the current sample of probed objects to learn by comparative exoplanetology whether certain absorption features are common. We selected the targets HAT-P-12b, HAT-P-19b and HAT-P-32b, for which the detection of atmospheric signatures is feasible with current ground-based instrumentation. In addition, we monitored the host stars of all three objects photometrically to correct for influences of stellar activity if necessary. The obtained measurements of the three objects all favor featureless spectra. A variety of atmospheric compositions can explain the lack of a wavelength dependent absorption. But the broad trend of featureless spectra in planets of a wide range of temperatures, found in this work and in similar studies recently published in the literature, favors an explanation based on the presence of condensates even at very low concentrations in the atmospheres of these close-in gas giants. This result points towards the general conclusion that the capability of transmission spectroscopy to determine the atmospheric composition is limited, at least for measurements at low spectral resolution. In addition, we refined the transit parameters and ephemerides of HAT-P-12b and HATP- 19b. Our monitoring campaigns allowed for the detection of the stellar rotation period of HAT-P-19 and a refined age estimate. For HAT-P-12 and HAT-P-32, we derived upper limits on their potential variability. The calculated upper limits of systematic effects of starspots on the derived transmission spectra were found to be negligible for all three targets. Finally, we discussed the observational challenges in the characterization of exoplanet atmospheres, the importance of correlated noise in the measurements and formulated suggestions on how to improve on the robustness of results in future work. N2 - Die Charakterisierung von Exoplaneten ist ein junger und sich schnell entwickelnder Zweig der Astronomie. Eine ihrer Methoden ist die Transmissionsspektroskopie, welche nach spektralen Abdrücken der Planetenatmosphäre im Licht des Muttersterns sucht. Diese Technik macht sich den Umstand zunutze, dass Planeten mit niedriger Bahnneigung einmal pro Umlauf vor ihrem Stern vorbeiziehen, wobei das Sternlicht Teile der Planetenatmosphäre durchläuft. Durch die Auswertung solcher Transitbeobachtungen lässt sich auf die chemische Zusammensetzung der Planetenatmosphäre schließen. Trotz der groβen Herausforderung an die benötigte Messgenauigkeit konnten bereits erste vielversprechende Ergebnisse erzielt werden und Entdeckungen wie zum Beispiel Rayleighstreuung und Absorption von Natrium und Kalium vermeldet werden. Andere Beobachtungen zeigten aber auch gänzlich flache Spektren ohne wellenlängenabhängige Absorption, welche auf eine Wolkenschicht oder Dunst in den Atmosphären hinweisen. In dieser Arbeit führten wir Transmissionsspektroskopie für drei extrasolare Planeten aus der Klasse der heißen Jupiter-artigen Gasriesen durch. Als wir mit unserer Studie begannen, waren erst zwei derartige Objekte erfolgreich auf ihr Spektrum im optischen Wellenlängenbereich untersucht worden. Unser Ziel war es, diese Anzahl zu erhöhen, um herauszufinden, welche spektralen Eigenschaften typisch für diese Exoplaneten sind. Wir wählten drei Objekte aus, für welche die zu erwartenden Messgenauigkeiten ausreichend für signifikante Ergebnisse sind: HAT-P-12b, HAT-P-19b und HAT-P-32b. Zusätzlich unternahmen wir Langzeitbeobachtungen der Muttersterne dieser Planeten, um die Transitbeobachtungen auf einen möglichen Einfluss von Sternaktivität zu korrigieren. Die erzielten Messungen der drei Planeten deuten alle auf Spektren ohne Absorptionslinien hin. Das Fehlen dieser Linien kann durch verschiedene Möglichkeiten zustande kommen, welche für die einzelnen Objekte individuell variieren können. Der Umstand jedoch, dass allen Objekten diese Linien fehlen und dass ähnliche Ergebnisse für weitere Objekte kürzlich in der Literatur publiziert wurden, deutet darauf hin, dass für einen bedeutenden Teil der Exoplaneten die Atmosphären nicht transparent, sondern durch kondensiertes Material optisch undurchlässig sind. Sollte sich dieses Ergebnis durch zukünftige Beobachtungen bestätigen, bedeutet es, dass die Transmissionsspektroskopie als Beobachtungstechnik nur sehr begrenzt für die Charakterisierung dieser Planetenatmosphären nützlich ist. Nur Beobachtungen hochaufgelöster Spektroskopie könnten dann verwertbare Informationen liefern. Weiterhin konnten wir in unserer Arbeit die Transitparameter und Ephemeriden von HAT-P-12b und HAT-P-19b genauer vermessen als es vorherigen Analysen möglich war. Durch unsere Langzeitbeobachtungen konnte die Rotationsperiode von HAT-P-19 bestimmt, sowie das Alter dieses Muttersterns neu berechnet werden. Ebenso leiteten wir Höchstwerte für eine mögliche Veränderlichkeit von HAT-P-12 und HAT-P-32 ab. Wir errechneten die Korrekturen der Transitparameter auf die Einflüsse von Sternaktivität und stellten fest, dass diese die Messergebnisse nicht wesentlich beeinflussen. Unsere Arbeit erlaubte tiefe Einblicke in die technischen Herausforderungen, welche diese Wissenschaft an die Sternbeobachtungen stellt. Wir diskutierten den Einfluss von systematischen Fehlern in den Messreihen und erarbeiteten Empfehlungen, wie die Messergebnisse weiter verbessert werden können. KW - extrasolar planets KW - atmospheric characterization KW - transmission spectroscopy KW - stellar variability KW - stellar activity KW - extrasolare Planeten KW - Charakterisierung Planetenatmosphären KW - Sternaktivität Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74403 ER - TY - JOUR A1 - Mallonn, Matthias A1 - Poppenhäger, Katja A1 - Granzer, Thomas A1 - Weber, Michael A1 - Strassmeier, Klaus G. T1 - Detection capability of ground-based meter-sized telescopes for shallow exoplanet transits JF - Astronomy and astrophysics : an international weekly journal N2 - Meter-sized ground-based telescopes are frequently used today for the follow-up of extrasolar planet candidates. While the transit signal of a Jupiter-sized object can typically be detected to a high level of confidence with small telescope apertures as well, the shallow transit dips of planets with the size of Neptune and smaller are more challenging to reveal. We employ new observational data to illustrate the photometric follow-up capabilities of meter-sized telescopes for shallow exoplanet transits. We describe in detail the capability of distinguishing the photometric signal of an exoplanet transit from an underlying trend in the light curve. The transit depths of the six targets we observed, Kepler-94b, Kepler-63b, K2-100b, K2-138b, K2-138c, and K2-138e, range from 3.9 ppt down to 0.3 ppt. For five targets of this sample, we provide the first ground-based photometric follow-up. The timing of three targets is precisely known from previous observations, and the timing of the other three targets is uncertain and we aim to constrain it. We detect or rule out the transit features significantly in single observations for the targets that show transits of 1.3 ppt or deeper. The shallower transit depths of two targets of 0.6 and 0.8 ppt were detected tentatively in single light curves, and were detected significantly by repeated observations. Only for the target of the shallowest transit depth of 0.3 ppt were we unable to draw a significant conclusion despite combining five individual light curves. An injection-recovery test on our real data shows that we detect transits of 1.3 ppt depth significantly in single light curves if the transit is fully covered, including out-of-transit data toward both sides, in some cases down to 0.7 ppt depth. For Kepler-94b, Kepler-63b, and K2-100b, we were able to verify the ephemeris. In the case of K2-138c with a 0.6 ppt deep transit, we were able to refine it, and in the case of K2-138e, we ruled out the transit in the time interval of more than ±1.5 σ of its current literature ephemeris. KW - methods: observational KW - techniques: photometric KW - planets and satellites: fundamental parameters Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202140599 SN - 0004-6361 SN - 1432-0746 VL - 657 PB - EDP Sciences CY - Les Ulis ER -