TY - THES A1 - Chanana, Munish T1 - Synthesis of stimuli-responsive and switchable inorganic nanoparticles for biomedical applications Y1 - 2010 CY - Potsdam ER - TY - JOUR A1 - Goldhahn, Christian A1 - Schubert, Jonas A1 - Schlaad, Helmut A1 - Ferri, James K. A1 - Fery, Andreas A1 - Chanana, Munish T1 - Synthesis of Metal@Protein@Polymer Nanoparticles with Distinct Interfacial and Phase Transfer Behavior JF - Chemistry of materials : a publication of the American Chemical Society N2 - In this study, we present a novel and facile method for the synthesis of multiresponsive plasmonic nanoparticles with an interesting interfacial behavior. We used thiol-initiated photopolymerization technique to graft poly(N-isopropylacrylamide) onto the surface of protein-coated gold nanoparticles. The combination of the protein bovine serum albumin with the thermoresponsive polymer leads to smart hybrid nanoparticles, which show a stimuli-responsive behavior of their aggregation and a precisely controllable phase transfer behavior. Three interconnected stimuli, namely, temperature, ionic strength, and pH, were identified as property tuning switches. The aggregation was completely reversible and was quantified by determining Smoluchowski’s instability ratios with time-resolved dynamic light scattering. The tunable hydrophobicity via the three stimuli was used to study interfacial activity and phase transfer behavior of the nanoparticles at an octanol/water interface. Depending on the type of coating (i.e., protein or protein/polymer) as well as the three external stimuli, the nanoparticles either remained in the aqueous phase (aggregated or nonaggregated), accumulated at the oil/water interface, wet the glass wall between the glass vial and the octanol phase, or even crossed the oil/water interface. Such smart and interfacially active nanoparticles with external triggers that are capable of crossing oil/water interfaces under physiological conditions open up new avenues for a variety of applications ranging from the development of drug-delivery nanosystems across biological barriers to the preparation of new catalytic materials. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b02314 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 19 SP - 6717 EP - 6727 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Löbbicke, Ruben A1 - Chanana, Munish A1 - Schlaad, Helmut A1 - Pilz-Allen, Christine A1 - Günter, Christina A1 - Möhwald, Helmuth A1 - Taubert, Andreas T1 - Polymer Brush Controlled Bioinspired Calcium Phosphate Mineralization and Bone Cell Growth JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface initiated free radical polymerization of methacrylic acid and dimethylaminotheyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid (PMAA) and poly(dimethylaminothyl methacrylate) (PDM- AEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate-on be number of living cells on the mineralized hybrid surface is ca. 3 times (P corresponding nonmineralized brushes. Y1 - 2011 U6 - https://doi.org/10.1021/bm200991b SN - 1525-7797 VL - 12 IS - 10 SP - 3753 EP - 3760 PB - American Chemical Society CY - Washington ER -