TY - JOUR A1 - Cao, Xing A1 - Ni, Binbin A1 - Summers, Danny A1 - Shprits, Yuri Y. A1 - Gu, Xudong A1 - Fu, Song A1 - Lou, Yuequn A1 - Zhang, Yang A1 - Ma, Xin A1 - Zhang, Wenxun A1 - Huang, He A1 - Yi, Juan T1 - Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution JF - Geophysical research letters N2 - Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <= 10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics. Y1 - 2019 U6 - https://doi.org/10.1029/2018GL081550 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 2 SP - 590 EP - 598 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cao, Xing A1 - Shprits, Yuri Y. A1 - Ni, Binbin A1 - Zhelavskaya, Irina T1 - Scattering of Ultra-relativistic Electrons in the Van Allen Radiation Belts Accounting for Hot Plasma Effects JF - Scientific reports N2 - Electron flux in the Earth’s outer radiation belt is highly variable due to a delicate balance between competing acceleration and loss processes. It has been long recognized that Electromagnetic Ion Cyclotron (EMIC) waves may play a crucial role in the loss of radiation belt electrons. Previous theoretical studies proposed that EMIC waves may account for the loss of the relativistic electron population. However, recent observations showed that while EMIC waves are responsible for the significant loss of ultra-relativistic electrons, the relativistic electron population is almost unaffected. In this study, we provide a theoretical explanation for this discrepancy between previous theoretical studies and recent observations. We demonstrate that EMIC waves mainly contribute to the loss of ultra-relativistic electrons. This study significantly improves the current understanding of the electron dynamics in the Earth’s radiation belt and also can help us understand the radiation environments of the exoplanets and outer planets. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-17739-7 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Long, Minyi A1 - Ni, Binbin A1 - Cao, Xing A1 - Gu, Xudong A1 - Kollmann, Peter A1 - Luo, Qiong A1 - Zhou, Ruoxian A1 - Guo, Yingjie A1 - Guo, Deyu A1 - Shprits, Yuri Y. T1 - Losses of radiation belt energetic particles by encounters with four of the inner Moons of Jupiter JF - Journal of geophysical research, Planets N2 - Based on an improved model of the moon absorption of Jovian radiation belt particles, we investigate quantitatively and comprehensively the absorption probabilities and particle lifetimes due to encounters with four of the inner moons of Jupiter (Amalthea, Thebe, Io, and Europa) inside L < 10. Our results demonstrate that the resultant average lifetimes of energetic protons and electrons vary dramatically between similar to 0.1 days and well above 1,000 days, showing a strong dependence on the particle equatorial pitch angle, kinetic energy and moon orbit. The average lifetimes of energetic protons and electrons against moon absorption are shortest for Io (i.e., similar to 0.1-10 days) and longest for Thebe (i.e., up to thousands of days), with the lifetimes in between for Europa and Amalthea. Due to the diploe tilt angle absorption effect, the average lifetimes of energetic protons and electrons vary markedly below and above alpha eq ${\alpha }_{\mathrm{e}\mathrm{q}}$ = 67 degrees. Overall, the average electron lifetimes exhibit weak pitch angle dependence, but the average proton lifetimes are strongly dependent on equatorial pitch angle. The average lifetimes of energetic protons decrease monotonically and substantially with the kinetic energy, but the average lifetimes of energetic electrons are roughly constant at energies 5MeV electrons. The most crucial differences introduced by the hot plasma effects occur for >3MeV electron scattering rates by He+ band EMIC waves. Mainly due to the changes of resonant frequency and wave group velocity when the hot protons are included, the difference in scattering rates can be up to an order of magnitude, showing a strong dependence on both electron energy and equatorial pitch angle. Our study confirms the importance of including hot plasma effects in modeling the scattering of ultra-relativistic radiation belt electrons by EMIC waves. Y1 - 2018 U6 - https://doi.org/10.1002/2017GL076028 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 1 SP - 21 EP - 30 PB - American Geophysical Union CY - Washington ER -