TY - GEN A1 - Gallego-Llorente, Marcos A1 - Sarah, Connell A1 - Jones, Eppie R. A1 - Merrett, Deborah C. A1 - Jeon, Y. A1 - Eriksson, Anders A1 - Siska, Veronika A1 - Gamba, Cristina A1 - Meiklejohn, Christopher A1 - Beyer, Robert A1 - Jeon, Sungwon A1 - Cho, Yun Sung A1 - Hofreiter, Michael A1 - Bhak, Jong A1 - Manica, Andrea A1 - Pinhasi, Ron T1 - The genetics of an early Neolithic pastoralist from the Zagros, Iran T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 952 KW - whole-genome association KW - ancient KW - domestication KW - agriculture KW - mountains KW - diffusion KW - migration KW - admixture KW - patterns KW - sequence KW - archaeology KW - biological anthropology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439355 SN - 1866-8372 IS - 952 ER - TY - JOUR A1 - Barnett, Ross A1 - Westbury, Michael V. A1 - Sandoval-Velasco, Marcela A1 - Vieira, Filipe Garrett A1 - Jeon, Sungwon A1 - Zazula, Grant A1 - Martin, Michael D. A1 - Ho, Simon Y. W. A1 - Mather, Niklas A1 - Gopalakrishnan, Shyam A1 - Ramos-Madrigal, Jazmin A1 - de Manuel, Marc A1 - Zepeda-Mendoza, M. Lisandra A1 - Antunes, Agostinho A1 - Baez, Aldo Carmona A1 - De Cahsan, Binia A1 - Larson, Greger A1 - O'Brien, Stephen J. A1 - Eizirik, Eduardo A1 - Johnson, Warren E. A1 - Koepfli, Klaus-Peter A1 - Wilting, Andreas A1 - Fickel, Jörns A1 - Dalen, Love A1 - Lorenzen, Eline D. A1 - Marques-Bonet, Tomas A1 - Hansen, Anders J. A1 - Zhang, Guojie A1 - Bhak, Jong A1 - Yamaguchi, Nobuyuki A1 - Gilbert, M. Thomas P. T1 - Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat BT - Homotherium latidens JF - Current biology N2 - Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a -7x nuclear genome and a similar to 38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (similar to 22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage. Y1 - 2020 U6 - https://doi.org/10.1016/j.cub.2020.09.051 SN - 0960-9822 SN - 1879-0445 VL - 30 IS - 24 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Siska, Veronika A1 - Jones, Eppie Ruth A1 - Jeon, Sungwon A1 - Bhak, Youngjune A1 - Kim, Hak-Min A1 - Cho, Yun Sung A1 - Kim, Hyunho A1 - Lee, Kyusang A1 - Veselovskaya, Elizaveta A1 - Balueva, Tatiana A1 - Gallego-Llorente, Marcos A1 - Hofreiter, Michael A1 - Bradley, Daniel G. A1 - Eriksson, Anders A1 - Pinhasi, Ron A1 - Bhak, Jong A1 - Manica, Andrea T1 - Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently similar to 3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to similar to 7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 791 KW - Mitochondrial-DNA analysis KW - positive selection KW - jomon skeletons KW - ancient DNA KW - pigmentation KW - population KW - admixture KW - edar KW - gene KW - polymorohism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439977 SN - 1866-8372 IS - 791 ER - TY - JOUR A1 - Siska, Veronika A1 - Jones, Eppie Ruth A1 - Jeon, Sungwon A1 - Bhak, Youngjune A1 - Kim, Hak-Min A1 - Cho, Yun Sung A1 - Kim, Hyunho A1 - Lee, Kyusang A1 - Veselovskaya, Elizaveta A1 - Balueva, Tatiana A1 - Gallego-Llorente, Marcos A1 - Hofreiter, Michael A1 - Bradley, Daniel G. A1 - Eriksson, Anders A1 - Pinhasi, Ron A1 - Bhak, Jong A1 - Manica, Andrea T1 - Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago JF - Science Advances N2 - Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently ~3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil’s Gate, an early Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe. Y1 - 2017 U6 - https://doi.org/10.1126/sciadv.1601877 SN - 2375-2548 VL - 3 IS - 2 PB - American Assoc. for the Advancement of Science CY - Washington ER -