TY - THES A1 - Schmidt, Silke Regina T1 - Analyzing lakes in the time frequency domain T1 - Analyse von Seen in der Zeit-Frequenz-Domäne N2 - The central aim of this thesis is to demonstrate the benefits of innovative frequency-based methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensitive to changes in climate and land use because they integrate disturbances across their entire catchment. This makes understanding the dynamics of lake ecosystems an intriguing and important research priority. This thesis adds new findings to the baseline knowledge regarding variability in lake ecosystems. It provides a literature-based, data-driven and methodological framework for the investigation of variability and patterns in environmental parameters in the time frequency domain. Observational data often show considerable variability in the environmental parameters of lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic processes inside and outside the ecosystems. These run in parallel and may operate at vastly different time scales, ranging from seconds to decades. In measured data, all of these signals are superimposed, and dominant processes may obscure the signals of other processes, particularly when analyzing mean values over long time scales. Dominant signals are often caused by phenomena at long time scales like seasonal cycles, and most of these are well understood in the limnological literature. The variability injected by biological, chemical and physical processes operating at smaller time scales is less well understood. However, variability affects the state and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently high temporal resolution, the investigation of the full spectrum of variability requires innovative methods of analysis. Analyzing observational data in the time frequency domain allows to identify variability at different time scales and facilitates their attribution to specific processes. The merit of this approach is subsequently demonstrated in three case studies. The first study uses a conceptual analysis to demonstrate the importance of time scales for the detection of ecosystem responses to climate change. These responses often occur during critical time windows in the year, may exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can only be detected if the temporal resolution of the data is high enough. The second study applies Fast Fourier Transform spectral analysis to two decades of daily water temperature measurements to show how temporal and spatial scales of water temperature variability can serve as an indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake. Synchronicities among limnological and meteorological time series in narrow frequency bands were used to identify and disentangle prevailing limnological processes. Beyond the novel empirical findings reported in the three case studies, this thesis aims to more generally be of interest to researchers dealing with now increasingly available time series data at high temporal resolution. A set of innovative methods to attribute patterns to processes, their drivers and constraints is provided to help make more efficient use of this kind of data. N2 - See-Ökosysteme sind eine der bedrohtesten Ressourcen der Hydrosphäre. Sie reagieren besonders sensibel auf Veränderungen des Klimas und auf Einflüsse durch Landnutzung, da verschiedene Prozesse im gesamten Einzugsgebiet auf sie einwirken. Daher ist es von besonderer Dringlichkeit, die verschiedenen Prozess-Dynamiken in See-Ökosystemen besser zu verstehen. Die hier vorliegende Doktorarbeit hat zum Ziel, das bestehende Wissen bezüglich der verschiedenen einwirkenden Prozesse in See-Ökosystemen zu erweitern. Die Arbeit stellt ein Forschungsdesign zur Diskussion, das eine Literatur-basierte und auf empirischen Erhebungen beruhende Analyse von Variabilität und Mustern in großen Datensätzen verschiedener Umweltparameter im Zeit-Frequenz-Raum ermöglicht. Umweltparameter sind häufig charakterisiert durch eine hohe zeitliche Dynamik. Diese Variabilität steht im Zentrum dieser Arbeit. Sie wird durch eine Fülle an periodischen und stochastischen Prozessen innerhalb und außerhalb des Ökosystems getrieben. Diese Prozesse können gleichzeitig und auf sehr unterschiedlichen Zeitskalen, von Sekunden bis hin zu Dekaden, ablaufen. In Messdaten überlagern sich alle diese Signale, und dominante Prozesse können die Signale anderer Prozesse verschleiern, insbesondere wenn Mittelwerte über längere Zeiträume analysiert werden. Dominante Signale werden oft durch Prozesse auf längeren Zeitskalen verursacht, wie z. B. saisonale Zyklen. Diese sind im Allgemeinen in der limnologischen Literatur gut dokumentiert. See-Ökosysteme werden allerdings von Prozessen auf allen Zeitskalen beeinflusst. Insbesondere biologische, chemische und physikalische Prozesse operieren in kürzeren Zeitrahmen. Die Variabilität, die über solche Prozesse in See-Ökosysteme eingebracht wird, ist bisher weit weniger gut erforscht. Neben der Notwendigkeit, Umweltparameter in hoher zeitlicher Auflösung zu messen, erfordert die Untersuchung der kompletten Bandbreite an Variabilität innovative Analysemethoden. Die Berücksichtigung der Zeit-Frequenz-Domäne kann dabei helfen, Dynamiken auf verschiedenen Zeitskalen zu identifizieren und daraus bestimmte Prozesse abzuleiten. Diese Arbeit zeigt die Vorzüge dieser Herangehensweise anhand von drei Fallstudien auf. Die erste Studie zeigt die Bedeutung von Zeitskalen für die Erfassung von Ökosystem-Reaktionen auf klimatische Veränderungen. Diese ereignen sich oft während kritischer Zeitfenster im Jahresverlauf und können durch die Überschreitung von Schwellenwerten in den treibenden Variablen, unter Umständen zeitlich verzögert, verursacht sein. Solche Zusammenhänge können nur erfasst werden, wenn die zeitliche Auflösung der Daten hoch genug ist. In der zweiten Studie wird die Spektralanalyse, basierend auf der Fast Fourier Transformation, auf einen Datensatz täglicher Messungen der Wassertemperatur über zwanzig Jahre hinweg angewendet. Es wird gezeigt, wie zeitliche und räumliche Skalen der Variabilität der Wassertemperatur als Indikator für Mischprozesse in einem polymiktischen See dienen können. In der dritten Studie wird die Wavelet Coherence als Diagnose-Werkzeug für einen multivariaten, hochfrequenten Datensatz genutzt. Dieser wurde zwischen dem Einsetzen einer Eisbedeckung und einer Sommerblüte von Cyanobakteriern in einem polymiktischen See im Jahr 2009 erhoben. Synchronizitäten zwischen limnologischen und meteorologischen Zeitreihen in schmalen Frequenz-Bändern wurden genutzt, um vorherrschende limnologische Prozesse zu identifizieren und analytisch zu trennen. Neben den neuen empirischen Erkenntnissen, die in den drei Fallstudien präsentiert werden, zielt diese Doktorarbeit darauf ab, Forscher*innen, Behörden und politischen Entscheidungsträger*innen eine Grundlage zu liefern, die hohe zeitliche Auflösung der heute vielfach verfügbaren Monitoring-Datensätze effizienter zu nutzen. Innovative Methoden sollen dabei helfen, Muster in den Daten Prozessen zuzuordnen und die entsprechenden Treiber und Limitationen zu identifizieren. KW - variability KW - time scale KW - wavelet KW - coherence KW - spectral analysis KW - time series analysis KW - polymictic lakes KW - process identification KW - Variabilität KW - Zeitskala KW - Spektralanalyse KW - Zeitreihenanalyse KW - polymiktische Seen KW - Prozessidentifikation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406955 ER - TY - THES A1 - Hendriyana, Andri T1 - Detection and Kirchhoff-type migration of seismic events by use of a new characteristic function T1 - Detektion und Kirchhoff-Migration seismischer Ereignisse durch Verwendung einer neuen charakteristischen Funktion N2 - The classical method of seismic event localization is based on the picking of body wave arrivals, ray tracing and inversion of travel time data. Travel time picks with small uncertainties are required to produce reliable and accurate results with this kind of source localization. Hence recordings, with a low Signal-to-Noise Ratio (SNR) cannot be used in a travel time based inversion. Low SNR can be related with weak signals from distant and/or low magnitude sources as well as with a high level of ambient noise. Diffraction stacking is considered as an alternative seismic event localization method that enables also the processing of low SNR recordings by mean of stacking the amplitudes of seismograms along a travel time function. The location of seismic event and its origin time are determined based on the highest stacked amplitudes (coherency) of the image function. The method promotes an automatic processing since it does not need travel time picks as input data. However, applying diffraction stacking may require longer computation times if only limited computer resources are used. Furthermore, a simple diffraction stacking of recorded amplitudes could possibly fail to locate the seismic sources if the focal mechanism leads to complex radiation patterns which typically holds for both natural and induced seismicity. In my PhD project, I have developed a new work flow for the localization of seismic events which is based on a diffraction stacking approach. A parallelized code was implemented for the calculation of travel time tables and for the determination of an image function to reduce computation time. In order to address the effects from complex source radiation patterns, I also suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original wave form data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. I demonstrate that, the performance of the mAIC does not depend on the chosen length of the analyzed time window and that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P- and S-waves due to inaccurate velocity models, I separate the P- and S-waves from the mAIC function by making use of polarization attributes. Then, eventually the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Before applying diffraction stacking, I also apply seismogram denoising by using Otsu thresholding in the time-frequency domain. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results even from seismograms with low SNR=1. Tests with different presentations of the synthetic seismograms (displacement, velocity, and acceleration) shown that, acceleration seismograms deliver better results in case of high SNR, whereas displacement seismograms provide more accurate results in case of low SNR recordings. In another test, different measures (maximum amplitude, other statistical parameters) were used to determine the source location in the final image function. I found that the statistical approach is the preferred method particularly for low SNR. The work flow of my diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for 9 months around the Tarutung pull-apart Basin were analyzed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung Basin. Two lineaments striking N-S were found in the middle of the Tarutung Basin which support independent results from structural geology. These features are interpreted as opening fractures due to local extension. A cluster of seismic events repeatedly occurred in short time which might be related to fluid drainage since two hot springs are observed at the surface near to this cluster. N2 - Klassische seismologische Verfahren zur Lokalisierung seismischer Ereignisse basieren auf der Bestimmung der Ankunftszeiten von Raumwellenphasen, der Berechnung von Strahlwegen in Untergrundmodellen sowie der Inversion der Laufzeitdaten. Um mit dieser Methode zuverlässige und genaue Lokalisierungsergebnisse zu erhalten, werden Laufzeitdaten mit kleinen Unsicherheiten benötigt. Folgerichtig müssen Seismogramme mit sehr geringen Signal-zu-Rausch Verhältnissen (S/N) häufig verworfen werden. Geringe S/N können einerseits durch schwache Signale am Empfänger, z.B. wegen großer Entfernungen zur Quelle und/oder bei Quellen mit kleiner Magnitude, und andererseits durch einen hohen Rauschpegel verursacht werden. Eine alternative Methode zur Herdlokalisierung ist die sogenannte Diffraktions-Stapel-ung. Hierbei werden die Amplituden der aufgezeichneten Wellenformen entlang von vorhergesagten Laufzeitfunktionen aufgestapelt. Durch konstruktive Aufsummation können auch Signale von Seismogrammen mit geringem S/N zur Lokalisierung beitragen. Als Teil des Verfahrens wird eine sogenannte Image-Funktion berechnet, deren maximale Amplitude (Kohärenz) mit dem Ort und der Zeit des Bebenherdes verknüpft ist. Die Methodik ist für eine Implementation von automatisierten Überwachungssystemen geeignet. Von Nachteil ist der relative hohe Rechenaufwand. Außerdem müssen bei der Diffraktions-Stapelung die komplizierten Abstrahlcharakteristika im Quellbereich und deren Auswirkungen auf die Signale an verschiedenen Empfängern im Unterschied zur Laufzeit-Inversion mit berücksichtigt werden. In meiner Arbeit habe ich eine neue Methodik zur Lokalisierung von Bebenherden unter Verwendung einer Diffraktions-Stapelung entwickelt. Zunächst werden Laufzeiten (Green’s Funktionen) für potentielle Herdlokationen mit Hilfe eines parallelisierten Algorithmus berechnet. Eine erste Vorbearbeitung der Seismogramme mit der Otsu-Threshold-ing Methode im Zeit-Frequenz-Bereich dient zur Unterdrückung von nicht-stationären Rauschanteilen. Anschliessend wird eine neu entwickelte charakteristische Funktion (CF) berechnet, um P- und S-Welleneinsätze in den gefilterten Daten noch stärker hervorzuheben. Die vorgeschlagene CF basiert auf einer modifizierten Version des Akaike Kriteriums. Die neue CF liefert stabile Resultate, die im Unterschied zum klassischen Akaike-Kriterium nicht von der subjektiv festzulegenden Länge des Analysefensters abhängig sind. Die Verwendung der CF ist darüber hinaus entscheidend, um den unerwünschten Einfluss der Abstrahlcharakteristik auf die gemessenen Amplituden bei der Diffraktions-Stapelung zu eliminieren. Eine finale Image-Funktion wird mit Hilfe einer Kovarianzmatrix-Analyse von P- und S- Image-Funktionen bestimmt, um daraus schließlich die Herdlokation zu ermitteln. Das neue Verfahren wird an Hand von synthetischen Daten getestet. Zuverlässige und genaue Resultate konnten selbst bei sehr geringen S/N von 1 erzielt werden. Tests mit verschiedenen Seismogramm-Varianten (Verschiebung, Geschwindigkeit, Beschleunigung) ergaben, dass bei hohem S/N Beschleunigungs-Seismogramme und bei sehr niedrigen S/N Verschiebungs-Seismogramme die besten Ergebnisse lieferten. Schliesslich wurde das Verfahren auf Daten aus einer Lokalbebenuntersuchung auf Sumatra (Indonesien) angewendet. Über einen Zeitraum von 9 Monaten wurde mit einem Netzwerk aus 42 Stationen die Seismizität im Bereich des Tarutung-Beckens an der Sumatra-Störung (SF) erfasst. Die Methode bildete hierbei ein lineares Segment der SF ab. Im Tarutung-Becken wurde eine komplexere Bebenverteilung abgeleitet. Ein Vergleich mit strukturgeologischen Daten liefert Rückschlüsse auf das tektonische und geothermische Regime im Untersuchungsgebiet. KW - time-series analysis KW - inverse theory KW - earthquake source observations KW - seismicity and tectonics KW - wave scattering and diffraction KW - body waves KW - computational seismology KW - Zeitreihenanalyse KW - Inversions-Theorie KW - Beobachtung von Erdbebenquellen KW - Seismizität und Tektonik KW - Wellenbrechung und Diffraktion KW - Raumwellen KW - computergestützte Seismologie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398879 ER -