TY - JOUR A1 - Gorenflot, Julien A1 - Paulke, Andreas A1 - Piersimoni, Fortunato A1 - Wolf, Jannic A1 - Kan, Zhipeng A1 - Cruciani, Federico A1 - El Labban, Abdulrahman A1 - Neher, Dieter A1 - Beaujuge, Pierre M. A1 - Laquai, Frederic T1 - From recombination dynamics to device performance BT - quantifying the efficiency of exciton dissociation, charge separation, and extraction in bulk heterojunction solar cells with Fluorine-Substituted polymer donors JF - dvanced energy materials N2 - An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM. KW - bulk heterojunction KW - charge generation yield KW - charge recombination yield KW - polymer solar cells KW - transient absorption spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701678 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Albrecht, Steve T1 - Generation, recombination and extraction of charges in polymer T1 - Generierung, Rekombination und Extraktion von Ladungen in Polymer BT - fullerene bulk heterojunction solar cells BT - Fulleren Mischsolarzellen N2 - A dramatic efficiency improvement of bulk heterojunction solar cells based on electron-donating conjugated polymers in combination with soluble fullerene derivatives has been achieved over the past years. Certified and reported power conversion efficiencies now reach over 9% for single junctions and exceed the 10% benchmark for tandem solar cells. This trend brightens the vision of organic photovoltaics becoming competitive with inorganic solar cells including the realization of low-cost and large-area organic photovoltaics. For the best performing organic materials systems, the yield of charge generation can be very efficient. However, a detailed understanding of the free charge carrier generation mechanisms at the donor acceptor interface and the energy loss associated with it needs to be established. Moreover, organic solar cells are limited by the competition between charge extraction and free charge recombination, accounting for further efficiency losses. A conclusive picture and the development of precise methodologies for investigating the fundamental processes in organic solar cells are crucial for future material design, efficiency optimization, and the implementation of organic solar cells into commercial products. In order to advance the development of organic photovoltaics, my thesis focuses on the comprehensive understanding of charge generation, recombination and extraction in organic bulk heterojunction solar cells summarized in 6 chapters on the cumulative basis of 7 individual publications. The general motivation guiding this work was the realization of an efficient hybrid inorganic/organic tandem solar cell with sub-cells made from amorphous hydrogenated silicon and organic bulk heterojunctions. To realize this project aim, the focus was directed to the low band-gap copolymer PCPDTBT and its derivatives, resulting in the examination of the charge carrier dynamics in PCPDTBT:PC70BM blends in relation to by the blend morphology. The phase separation in this blend can be controlled by the processing additive diiodooctane, enhancing domain purity and size. The quantitative investigation of the free charge formation was realized by utilizing and improving the time delayed collection field technique. Interestingly, a pronounced field dependence of the free carrier generation for all blends is found, with the field dependence being stronger without the additive. Also, the bimolecular recombination coefficient for both blends is rather high and increases with decreasing internal field which we suggest to be caused by a negative field dependence of mobility. The additive speeds up charge extraction which is rationalized by the threefold increase in mobility. By fluorine attachment within the electron deficient subunit of PCPDTBT, a new polymer F-PCPDTBT is designed. This new material is characterized by a stronger tendency to aggregate as compared to non-fluorinated PCPDTBT. Our measurements show that for F-PCPDTBT:PCBM blends the charge carrier generation becomes more efficient and the field-dependence of free charge carrier generation is weakened. The stronger tendency to aggregate induced by the fluorination also leads to increased polymer rich domains, accompanied in a threefold reduction in the non-geminate recombination coefficient at conditions of open circuit. The size of the polymer domains is nicely correlated to the field-dependence of charge generation and the Langevin reduction factor, which highlights the importance of the domain size and domain purity for efficient charge carrier generation. In total, fluorination of PCPDTBT causes the PCE to increase from 3.6 to 6.1% due to enhanced fill factor, short circuit current and open circuit voltage. Further optimization of the blend ratio, active layer thickness, and polymer molecular weight resulted in 6.6% efficiency for F-PCPDTBT:PC70BM solar cells. Interestingly, the double fluorinated version 2F-PCPDTBT exhibited poorer FF despite a further reduction of geminate and non-geminate recombination losses. To further analyze this finding, a new technique is developed that measures the effective extraction mobility under charge carrier densities and electrical fields comparable to solar cell operation conditions. This method involves the bias enhanced charge extraction technique. With the knowledge of the carrier density under different electrical field and illumination conditions, a conclusive picture of the changes in charge carrier dynamics leading to differences in the fill factor upon fluorination of PCPDTBT is attained. The more efficient charge generation and reduced recombination with fluorination is counterbalanced by a decreased extraction mobility. Thus, the highest fill factor of 60% and efficiency of 6.6% is reached for F-PCPDTBT blends, while 2F-PCPDTBT blends have only moderate fill factors of 54% caused by the lower effective extraction mobility, limiting the efficiency to 6.5%. To understand the details of the charge generation mechanism and the related losses, we evaluated the yield and field-dependence of free charge generation using time delayed collection field in combination with sensitive measurements of the external quantum efficiency and absorption coefficients for a variety of blends. Importantly, both the yield and field-dependence of free charge generation is found to be unaffected by excitation energy, including direct charge transfer excitation below the optical band gap. To access the non-detectable absorption at energies of the relaxed charge transfer emission, the absorption was reconstructed from the CT emission, induced via the recombination of thermalized charges in electroluminescence. For a variety of blends, the quantum yield at energies of charge transfer emission was identical to excitations with energies well above the optical band-gap. Thus, the generation proceeds via the split-up of the thermalized charge transfer states in working solar cells. Further measurements were conducted on blends with fine-tuned energy levels and similar blend morphologies by using different fullerene derivatives. A direct correlation between the efficiency of free carrier generation and the energy difference of the relaxed charge transfer state relative to the energy of the charge separated state is found. These findings open up new guidelines for future material design as new high efficiency materials require a minimum energetic offset between charge transfer and the charge separated state while keeping the HOMO level (and LUMO level) difference between donor and acceptor as small as possible. N2 - Die Effizienz von organischen Mischsolarzellen ist in den letzten Jahren durch die Entwicklung neuer halbleitender Materialen beträchtlich gestiegen. Die besten organischen Mischsolarzellen zeigen heute sehr effiziente Ladungsgeneration. Dennoch ist die genaue Funktionsweise der fundamentalen Ladungsgenerationsschritte nicht bis ins Detail verstanden. Zur weiteren Steigerung der Wirkungsgrade und für die kommerzielle Nutzung organischer Mischsolarzellen, sind ein übergreifendes Verständnis der Funktionsweise und die Entwicklung neuer Messmethoden unumgänglich. Die vorliegende Arbeit ist auf diese Fragestellung fokussiert: die Arbeit soll helfen, fundierte Kenntnisse der Ladungsträgererzeugung, der Rekombination und der Extraktion freier Ladungsträger in organischen Mischsolarzellen zu erlangen. Zuerst wurde der Fokus auf Mischsolarzellen mit dem Polymer PCPDTBT gelegt. Dieses Polymer durchmischt stark mit dem Fulleren-Derivat PCBM. Durch Verwendung eines Lösungsmitteladditives kann die Phasenentmischung und damit der Wirkungsgrad deutlich gesteigert werden. Die Generations- und Rekombinationsprozesse wurden mittels zeitverzögerter Sammelfeld-Methode untersucht. Dabei wurde zum ersten Mal eine signifikante Feldabhängigkeit der Ladungsträger-erzeugung entdeckt. Interessanterweise korreliert diese Feldabhängigkeit mit der Domänengröße also dem Grad der Entmischung. In größeren und reineren Polymerphasen ist die Feldabhängigkeit kleiner und die Extraktion verbessert, was zum höheren Wirkungsgrad führt. In einem weiteren Schritt wurde untersucht, wie sich die Fluorinierung des Polymers PCPDTBT auf das Bauteilverhalten auswirkt. Durch Fluorinierung des Polymer-Rückgrats von PCPDTBT wurden zum einen die Energieniveaus abgesenkt, ohne dass sich das Absorptionsverhalten geändert hat. Zum anderen wurde die Phasenentmischung beeinflusst. Mit Fluorinierung entstehen größere, reinere und kristallinere Polymerphasen. Dadurch wird die Generation der Ladungsträger effizienter und die Rekombination stärker unterdrückt. Eindeutige Korrelationen zwischen Phasengröße und Generationseffizienz konnten hierbei gefunden werden. Insgesamt steigt die Bauteileffizienz bei Verwendung von fluoriniertem PCPDTBT von 3.6 auf 6.1% bei gleicher Prozessierung. Durch weitere Optimierung konnte die Effizienz auf 6.6% für fluoriniertes PCPDTBT gesteigert werden. Eine di-Fluorinierung von PCPDTBT limitiert die Bauteileffizienz, speziell den Füll Faktor, trotz der Entstehung noch reinerer Polymerphasen. Eine genauere Analyse der Extraktionseffizienz mittels der genauen Bestimmung der Gleichgewichts-Ladungsträgerdichte für verschiedenen Beleuchtungs- und Feldsituationen zeigte, dass die Fluorinierung die Effizienz der Extraktion deutlich absenkt und dadurch bei di-Fluorinierung die Rekombinationsverluste im Bauteil trotz verlangsamter Rekombination ansteigen. Um weitere fundierte Kenntnisse der Ladungsgeneration zu gewinnen, wurde die Ladungsgeneration für verschiedene Gemische mit veränderten Energieniveaus in Abhängigkeit der Anregungsenergie untersucht. Dabei wurde die wichtige Kenntnis erlangt, dass die Photonenenergie, unabhängig von der Lage der Energieniveaus, keinen Einfluss auf die Effizienz der Generation hat und somit die Bildung freier Ladungsträger aus relaxierten Transferzuständen erfolgt. Dadurch ergeben sich neue Leitlinien für zukünftige Materialeigenschaften mit optimierten Wirkungsgraden. KW - organic solar cells KW - bulk heterojunction KW - charge carrier dynamics KW - charge generation KW - non geminate recombination KW - Generierung von Ladungsträgern KW - nicht geminale Rekombination KW - Extraktion KW - Polymer KW - Fulleren Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-72285 ER - TY - JOUR A1 - Love, John A. A1 - Feuerstein, Markus A1 - Wolff, Christian Michael A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors JF - ACS applied materials & interfaces N2 - Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells. KW - mobility KW - bulk heterojunction KW - time of flight KW - lead halide perovskites KW - charge generation layers Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b10361 SN - 1944-8244 VL - 9 SP - 42011 EP - 42019 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cardinaletti, Ilaria A1 - Kesters, Jurgen A1 - Bertho, Sabine A1 - Conings, Bert A1 - Piersimoni, Fortunato A1 - Lutsen, Laurence A1 - Nesladek, Milos A1 - Van Mele, Bruno A1 - Van Assche, Guy A1 - Vandewal, Koen A1 - Salleo, Alberto A1 - Vanderzande, Dirk A1 - Maes, Wouter A1 - Manca, Jean V. T1 - Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology JF - Journal of photonics for energy N2 - When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. KW - organic photovoltaics KW - bulk heterojunction KW - thermal stability KW - phase separation KW - lifetime Y1 - 2014 U6 - https://doi.org/10.1117/1.JPE.4.040997 SN - 1947-7988 VL - 4 PB - SPIE CY - Bellingham ER -