TY - JOUR A1 - Buljak, Vladimir A1 - Bruno, Giovanni T1 - Numerical modeling of thermally induced microcracking in porous ceramics BT - an approach using cohesive elements JF - Journal of the European Ceramic Society N2 - A numerical framework is developed to study the hysteresis of elastic properties of porous ceramics as a function of temperature. The developed numerical model is capable of employing experimentally measured crystallographic orientation distribution and coefficient of thermal expansion values. For realistic modeling of the microstructure, Voronoi polygons are used to generate polycrystalline grains. Some grains are considered as voids, to simulate the material porosity. To model intercrystalline cracking, cohesive elements are inserted along grain boundaries. Crack healing (recovery of the initial properties) upon closure is taken into account with special cohesive elements implemented in the commercial code ABAQUS. The numerical model can be used to estimate fracture properties governing the cohesive behavior through inverse analysis procedure. The model is applied to a porous cordierite ceramic. The obtained fracture properties are further used to successfully simulate general non-linear macroscopic stress-strain curves of cordierite, thereby validating the model. KW - analysis KW - Cohesive finite elements KW - Interfacial strength Y1 - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.03.041 SN - 0955-2219 SN - 1873-619X VL - 38 IS - 11 SP - 4099 EP - 4108 PB - Elsevier CY - Oxford ER -