TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials JF - MRS Advances N2 - The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600% with the PCL contribution to fixation increasing to 42 +/- 2% at programming strains of 900% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.590 SN - 2059-8521 VL - 3 IS - 63 SP - 3741 EP - 3749 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wang, Li A1 - Razzaq, Muhammad Yasar A1 - Rudolph, Tobias A1 - Heuchel, Matthias A1 - Nöchel, Ulrich A1 - Mansfeld, Ulrich A1 - Jiang, Yi A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reprogrammable, magnetically controlled polymeric nanocomposite actuators JF - Material horizons N2 - Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance. Y1 - 2018 U6 - https://doi.org/10.1039/c8mh00266e SN - 2051-6347 SN - 2051-6355 VL - 5 IS - 5 SP - 861 EP - 867 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yan, Wan A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains JF - Macromolecules : a publication of the American Chemical Society N2 - Polymeric materials possessing specific features like programmability, high deformability, and easy processability are highly desirable for creating modern actuating systems. In this study, thermoplastic shape-memory polymer actuators obtained by combining crystallizable poly(epsilon-caprolactone) (PCL) and poly(3S-isobutylmorpholin-2,5-dione) (PIBMD) segments in multiblock copolymers are described. We designed these materials according to our hypothesis that the confinement of glassy PIBMD domains present at the upper actuation temperature contribute to the stability of the actuator skeleton, especially at large programming strains. The copolymers have a phase-segregated morphology, indicated by the well-separated melting and glass transition temperatures for PIBMD and PCL, but possess a partially overlapping T-m of PCL and T-g of PIBMD in the temperature interval from 40 to 60 degrees C. Crystalline PIBMD hard domains act as strong physical netpoints in the PIBMD-PCL bulk material enabling high deformability (up to 2000%) and good elastic recoverability (up to 80% at 50 degrees C above T-m,T-PCL). In the programmed thermoplastic actuators a high content of crystallizable PCL actuation domains ensures pronounced thermoreversible shape changes upon repetitive cooling and heating. The programmed actuator skeleton, composed of PCL crystals present at the upper actuation temperature T-high and the remaining glassy PIBMD domains, enabled oriented crystallization upon cooling. The actuation performance of PIBMD-PCL could be tailored by balancing the interplay between actuation and skeleton, but also by varying the quantity of crystalline PIBMD hard domains via the copolymer composition, the applied programming strain, and the choice of T-high. The actuator with 17 mol% PIBMD showed the highest reversible elongation of 11.4% when programmed to a strain of 900% at 50 degrees C. It is anticipated that the presented thermoplastic actuator materials can be applied as modern compression textiles. Y1 - 2018 U6 - https://doi.org/10.1021/acs.macromol.8b00322 SN - 0024-9297 SN - 1520-5835 VL - 51 IS - 12 SP - 4624 EP - 4632 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Peng, Xingzhou A1 - Behl, Marc A1 - Zhang, Pengfei A1 - Mazurek-Budzynska, Magdalena A1 - Feng, Yakai A1 - Lendlein, Andreas T1 - Synthesis of Well-Defined Dihydroxy Telechelics by (Co)polymerization of Morpholine-2,5-Diones Catalyzed by Sn(IV) Alkoxide JF - Macromolecular bioscience N2 - Well-defined dihydroxy telechelic oligodepsipeptides (oDPs), which have a high application potential as building blocks for scaffold materials for tissue engineering applications or particulate carrier systems for drug delivery applications are synthesized by ring-opening polymerization (ROP) of morpholine-2,5-diones (MDs) catalyzed by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane (Sn(IV) alkoxide). In contrast to ROP catalyzed by Sn(Oct)(2), the usage of Sn(IV) alkoxide leads to oDPs, with less side products and well-defined end groups, which is crucial for potential pharmaceutical applications. A slightly faster reaction of the ROP catalyzed by Sn(IV) alkoxide compared to the ROP initiated by Sn(Oct)(2)/EG is found. Copolymerization of different MDs resulted in amorphous copolymers with T(g)s between 44 and 54 degrees C depending on the molar comonomer ratios in the range from 25% to 75%. Based on the well-defined telechelic character of the Sn(IV) alkoxide synthesized oDPs as determined by matrix-assisted laser desorption/ionization time of flight measurements, they resemble interesting building blocks for subsequent postfunctionalization or multifunctional materials based on multiblock copolymer systems whereas the amorphous oDP-based copolymers are interesting building blocks for matrices of drug delivery systems. KW - oligodepsipeptides KW - ring-opening polymerization KW - Sn(IV) alkoxide KW - telechelics KW - tin(II) 2-ethylhexanoate Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800257 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Thermally-induced actuation of magnetic nanocomposites based on Oligo(ω-pentadecalactone) and covalently integrated magnetic nanoparticles JF - MRS advances: a journal of the Materials Research Society (MRS) N2 - The incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1−1 ) and an OPDL (Mn =3300 g • mol−1 ) coated magnetite nanoparticle (Ø = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC − 76 ºC to 41ºC − 81 °C for H-NC with 9 wt% of MNP content. The actuators were explored by variation of separating temperature (Tsep), which splits the OPDL crystalline domain into actuating and geometry determining segments. Tsep was varied in the melting range of the nanocomposites and the actuation capability and contractual stress (σcontr) of the nanocomposite actuators could be adjusted. The reversible strain (εrev) was decreased from 11 ± 0.3% for homo polymer network to 3.2±0.3% for H-NC9 with 9 wt% of MNP indicating a restraining effect of the MNP on chain mobility. The results show that the performance of H-NCs in terms of thermal and elastic properties can be tailored by MNP content, however for higher reversible actuation, lower MNP contents are preferable. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.613 SN - 2059-8521 VL - 3 IS - 63 SP - 3783 EP - 3791 PB - Cambridge University Press CY - New York ER -