TY - JOUR A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal JF - RSC Advances N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. Y1 - 2014 U6 - https://doi.org/10.1039/c4ra05146g SN - 2046-2069 VL - 4 IS - 70 SP - 37423 EP - 37430 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 283 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99427 ER -