TY - JOUR A1 - Zobir, Soraya Hadj A1 - Oberhänsli, Roland T1 - The sidi Mohamed peridotites (Edough Massif, NE Algeria) - evidence for an upper mantle origin JF - Journal of earth system science N2 - The Hercynian Edough massif is the easternmost crystalline massif of the Algerian coast. It consists of two tectonically superposed units composed of micaschists, gneisses, and peridotite. This study concentrates on the small and isolated Sidi Mohamed peridotite outcrop area (0.03 km(2)). The Sidi Mohamed peridotite is composed mainly of harzburgites (Mg-rich olivine and orthopyroxene as major minerals). The Ni (2051-2920 ppm), Cr (2368-5514 ppm) and MgO (similar to 28-35 wt.%) whole-rock composition and the relative depletion in Nb make these harzburgites comparable to depleted peridotites related to a subduction zone. We suggest that the Sidi Mohamed ultramafic body was derived directly from the upper mantle and tectonically incorporated into the gneiss units of the Edough metamorphic core complex in a subduction environment. KW - Peridotites KW - upper mantle KW - Edough KW - Algeria Y1 - 2013 U6 - https://doi.org/10.1007/s12040-013-0358-z SN - 0253-4126 SN - 0973-774X VL - 122 IS - 6 SP - 1455 EP - 1465 PB - Indian Academy of Science CY - Bangalore ER - TY - JOUR A1 - Pourteau, Amaury A1 - Sudo, Masafumi A1 - Candan, Osman A1 - Lanari, P. A1 - Vidal, O. A1 - Oberhänsli, Roland T1 - Neotethys closure history of Anatolia - insights from Ar-40-Ar-39 geochronology and P-T estimation in high-pressure metasedimentary rocks JF - Journal of metamorphic geology N2 - The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction-and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP-LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide-Tauride continental block (namely the Afyon Zone, the Oren Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica Ar-40-Ar-39 geochronology), and where possible are combined with P-T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP-LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67-62 Ma. Early retrograde stages in the Oren Unit are dated to 63-59 Ma. In the Kurudere-Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Oren Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere-Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP-LT metamorphic belts thus formed: the northernmost Tavsanli Zone (c. 88-82 Ma), the Oren-Afyon Zone (between 70 and 65 Ma), and the Kurudere-Nebiler Unit (c. 52-45 Ma). The southward younging trend of the HP-LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93-90 and c. 35 Ma. After the accretion of the Menderes-Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography. KW - Ar-40-Ar-39 geochronology KW - Anatolia KW - chlorite-phengite thermobarometry KW - high-pressure metasedimentary rocks Y1 - 2013 U6 - https://doi.org/10.1111/jmg.12034 SN - 0263-4929 SN - 1525-1314 VL - 31 IS - 6 SP - 585 EP - 606 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Omrani, Hadi A1 - Moazzen, Mohssen A1 - Oberhänsli, Roland A1 - Altenberger, Uwe A1 - Lange, Manuela T1 - The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction JF - International journal of earth sciences N2 - The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite +/- A omphacite +/- A quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz +/- A omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13-15.5 kbar at temperatures of 420-500 A degrees C. Peak metamorphic temperature/depth ratios were low (similar to 12 A degrees C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5-7 kbar and temperatures between 450 and 550 A degrees C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of > 300 A degrees C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran). KW - Central Iranian micro-continent (CIM) KW - Neotethys Ocean KW - Glaucophane schist KW - Sabzevar KW - Iran Y1 - 2013 U6 - https://doi.org/10.1007/s00531-013-0881-9 SN - 1437-3254 VL - 102 IS - 5 SP - 1491 EP - 1512 PB - Springer CY - New York ER - TY - JOUR A1 - Omrani, H. A1 - Moazzen, Mohssen A1 - Oberhänsli, Roland A1 - Tsujimori, T. A1 - Bousquet, Romain A1 - Moayyed, M. T1 - Metamorphic history of glaucophane-paragonite-zoisite eclogites from the Shanderman area, northern Iran JF - Journal of metamorphic geology N2 - The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope-rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post-peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15-20kbar at similar to 600 degrees C. The pre-peak blueschist facies assemblage yields <11kbar and 400-460 degrees C. The average pressure and temperature of the post-peak amphibolite stage was 5-6kbar, similar to 470 degrees C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran. KW - eclogite KW - late Palaeozoic KW - North Iran KW - Palaeotethys KW - P-T path KW - Shanderman Y1 - 2013 U6 - https://doi.org/10.1111/jmg.12045 SN - 0263-4929 VL - 31 IS - 8 SP - 791 EP - 812 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Oberhänsli, Roland A1 - Koralay, E. A1 - Candan, Osman A1 - Pourteau, Amaury A1 - Bousquet, Romain T1 - Late cretaceous eclogitic high-pressure relics in the Bitlis Massif JF - Geodinamica acta : revue de géologie dynamique et de géographie physique N2 - A new occurrence of eclogites was found in the Kesandere valley in the eastern most part of the Bitlis complex, SE Anatolia. These high-pressure (HP) relics were preserved in calc-arenitic metasediments within the high-grade metamorphic basement of the Bitlis complex. The eclogitic parageneses were strongly overprinted during decompression and heating. These new eclogites locality complements the evidence of blueschist-facies metamorphism documented recently in the meta-sedimentary cover sequence of this part of the Bitlis complex. Thermodynamic calculations suggest peak conditions of ca. 480-540 degrees C/1.9-2.4GPa. New U/Pb dates of 84.4 +/-.9 and 82.4 +/-.9Ma were obtained on zircons from two Kesandere eclogite samples. On the basis of geochemical criteria, these dates are interpreted to represent zircon crystallization during the eclogitic peak stage. Kesandere eclogites differ from those previously described in the western Bitlis complex (Mt. Gablor locality) in terms of lithologic association, protolithic origin, and peak P-T conditions (600-650 degrees C/1.0-2.0GPa, respectively). On the other hand, eclogitic metamorphism of Kesandere metasediments occurred shortly before blueschist-facies metamorphism of the sedimentary cover (79-74Ma Ar-40/Ar-39 white mica). Therefore, the exhumation of Kesandere eclogites started between ca. 82 and 79Ma, while the meta-sedimentary cover was being buried. During this short time span, Kesandere eclogite were likely uplifted from similar to 65 to 35km depth, indicating a syn-subduction exhumation rate of similar to 4.3mm/a. Subsequently, eclogite- and blueschist-facies rocks were likely retrogressed contemporarily during collision-type metamorphism (around 72-69Ma). The Bitlis HP rocks thus sample a subduction zone that separated the Bitlis-Puturge (Bistun?) block from the South-Armenian block, further north. To the south, Eocene metasediments of the Urse formation are imbricated below the Bitlis complex. They contain (post Eocene) blueschists, testifying separation from the Arabian plate and southward migration of the subduction zone. The HT overprint of Kesandere eclogites can be related to the asthenospheric flow provoked by subducting slab retreat or break off. KW - eclogites KW - zircon KW - U KW - Pb ages KW - E Anatolia KW - subduction-collision Y1 - 2013 U6 - https://doi.org/10.1080/09853111.2013.858951 SN - 0985-3111 SN - 1778-3593 VL - 26 IS - 3-4 SP - 175 EP - 190 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Oberhänsli, Roland T1 - High-Pressure - Low-temperature evolution in the Indus-Tsangpo suture along the Kohistan Arc (Kaghan Valley, NE Pakistan) JF - Episodes : journal of international geosciences N2 - North of Naran in the Kaghan Valley (NE Pakistan), the metabasites of the melange units lying below the Kohistan Arc, contain glaucophane. Typically they reflect blueschist-metamorphic conditions (0.7 GPa, 400 degrees C). Associated graphite-rich metapelites with quartz veins underwent upper greenschist to amphibolite conditions. Near Naran we observed in quartz grains of type 3 veins first minute relics of Fe-Mg carpholite indicating earlier blueschist metamorphic conditions. P-T estimates indicate 1.2-1.6 GPa at 380-410 degrees C, pressure and temperature values typical for blueschist metamorphic conditions. Changes in mineral assemblages and abundant sudoite component in associated chlorite point to a pressure drop after peak I conditions. We assign the observed changes to peak I conditions occurring during a Cretaceous subduction event. Temperatures estimated with Raman graphite-thermometry clearly indicate a significant subsequent rise of post-peak I temperatures up to 500 degrees C. This is compatible with the amphibolite peak II assigned to the Tertiary continental collision that leads to subduction of the Indian Plate and ultra-high-pressure metamorphism. During subduction the blueschist metamorphic metapelites underwent dehydration, which caused alteration in the overlying lithospheric mantle. In a hydrated lithospheric mantle density is significantly reduced which enhanced subduction of continental crust in the Higher Himalaya. This P-T evolution is typical for a collision orogen with a high plateau but remarkably contrasting findings from Eastern Anatolia, where plateau building is in "statu nascendi" (e.g., Oberhänsli et al., 2010). Y1 - 2013 SN - 0705-3797 VL - 36 IS - 2 SP - 87 EP - 93 PB - Geological Society of India CY - Bangalore ER - TY - JOUR A1 - Lambert, Ian A1 - Durrheim, Ray A1 - Godoy, Marcio A1 - Kota, Mxolisi A1 - Leahy, Pat A1 - Ludden, John A1 - Nickless, Edmund A1 - Oberhänsli, Roland A1 - Anjian, Wang A1 - Williams, Neil T1 - Resourcing future generations a proposed new IUGS initiative JF - Episodes : journal of international geosciences Y1 - 2013 SN - 0705-3797 VL - 36 IS - 2 SP - 82 EP - 86 PB - Geological Society of India CY - Bangalore ER - TY - JOUR A1 - Jolivet, Laurent A1 - Faccenna, Claudio A1 - Huet, Benjamin A1 - Labrousse, Loic A1 - Le Pourhiet, Laetitia A1 - Lacombe, Olivier A1 - Lecomte, Emmanuel A1 - Burov, Evguenii A1 - Denele, Yoann A1 - Brun, Jean-Pierre A1 - Philippon, Melody A1 - Paul, Anne A1 - Salaue, Gwenaelle A1 - Karabulut, Hayrullah A1 - Piromallo, Claudia A1 - Monie, Patrick A1 - Gueydan, Frederic A1 - Okay, Aral I. A1 - Oberhänsli, Roland A1 - Pourteau, Amaury A1 - Augier, Romain A1 - Gadenne, Leslie A1 - Driussi, Olivier T1 - Aegean tectonics strain localisation, slab tearing and trench retreat JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - We review the geodynamic evolution of the Aegean-Anatolia region and discuss strain localisation there over geological times. From Late Eocene to Present, crustal deformation in the Aegean backarc has localised progressively during slab retreat. Extension started with the formation of the Rhodope Metamorphic Core Complex (Eocene) and migrated to the Cyclades and the northern Menderes Massif (Oligocene and Miocene), accommodated by crustal-scale detachments and a first series of core complexes (MCCs). Extension then localised in Western Turkey, the Corinth Rift and the external Hellenic arc after Messinian times, while the North Anatolian Fault penetrated the Aegean Sea. Through time the direction and style of extension have not changed significantly except in terms of localisation. The contributions of progressive slab retreat and tearing, basal drag, extrusion tectonics and tectonic inheritance are discussed and we favour a model (I) where slab retreat is the main driving engine, (2) successive slab tearing episodes are the main causes of this stepwise strain localisation and (3) the inherited heterogeneity of the crust is a major factor for localising detachments. The continental crust has an inherited strong heterogeneity and crustal-scale contacts such as major thrust planes act as weak zones or as zones of contrast of resistance and viscosity that can localise later deformation. The dynamics of slabs at depth and the asthenospheric flow due to slab retreat also have influence strain localisation in the upper plate. Successive slab ruptures from the Middle Miocene to the late Miocene have isolated a narrow strip of lithosphere, still attached to the African lithosphere below Crete. The formation of the North Anatolian Fault is partly a consequence of this evolution. The extrusion of Anatolia and the Aegean extension are partly driven from below (asthenospheric flow) and from above (extrusion of a lid of rigid crust). KW - Backarc extension KW - Slab retreat KW - Asthenospheric flow KW - Strain localisation KW - Aegean Sea KW - Metamorphic core complex Y1 - 2013 U6 - https://doi.org/10.1016/j.tecto.2012.06.011 SN - 0040-1951 VL - 597 SP - 1 EP - 33 PB - Elsevier CY - Amsterdam ER -