TY - JOUR A1 - Prasicek, Günther A1 - Herman, Frederic A1 - Robl, Jörg A1 - Braun, Jean T1 - Glacial steady state topography controlled by the coupled influence of tectonics and climate JF - Journal of geophysical research : Earth surface N2 - Glaciers and rivers are the main agents of mountain erosion. While in the fluvial realm empirical relationships and their mathematical description, such as the stream power law, improved the understanding of fundamental controls on landscape evolution, simple constraints on glacial topography and governing scaling relations are widely lacking. We present a steady state solution for longitudinal profiles along eroding glaciers in a coupled system that includes tectonics and climate. We combined the shallow ice approximation and a glacial erosion rule to calculate ice surface and bed topography from prescribed glacier mass balance gradient and rock uplift rate. Our approach is inspired by the classic application of the stream power law for describing a fluvial steady state but with the striking difference that, in the glacial realm, glacier mass balance is added as an altitude-dependent variable. From our analyses we find that ice surface slope and glacial relief scale with uplift rate with scaling exponents indicating that glacial relief is less sensitive to uplift rate than relief in most fluvial landscapes. Basic scaling relations controlled by either basal sliding or internal deformation follow a power law with the exponent depending on the exponents for the glacial erosion rule and Glen's flow law. In a mixed scenario of sliding and deformation, complicated scaling relations with variable exponents emerge. Furthermore, a cutoff in glacier mass balance or cold ice in high elevations can lead to substantially larger scaling exponents which may provide an explanation for high relief in high latitudes. KW - glacial equilibrium KW - steady state topography KW - glacial erosion KW - glacial buzzsaw KW - rock uplift-relief scaling KW - scaling relation Y1 - 2018 U6 - https://doi.org/10.1029/2017JF004559 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 6 SP - 1344 EP - 1362 PB - American Geophysical Union CY - Washington ER -