TY - JOUR A1 - Poppenhäger, Katja T1 - How stars and planets interact BT - A look through the high-energy window JF - Astronomische Nachrichten = Astronomical notes N2 - The architecture of exoplanetary systems is often different from the solar system, with some exoplanets being in close orbits around their host stars and having orbital periods of only a few days. In analogy to interactions between stars in close binary systems, one may expect interactions between the star and the exoplanet as well. From theoretical considerations, effects on the host star through tidal and magnetic interaction with the exoplanet are possible; for the exoplanet, some interesting implications are the evaporation of the planetary atmosphere and potential effects on the planetary magnetism. In this review, several possible interaction pathways and their observational prospects and existing evidence are discussed. A particular emphasis is put on observational opportunities for these kinds of effects in the high-energy regime. KW - magnetic fields KW - planet-star interactions KW - stars KW - activity KW - X-rays Y1 - 2019 U6 - https://doi.org/10.1002/asna.201913619 SN - 0004-6337 SN - 1521-3994 VL - 340 IS - 4 SP - 329 EP - 333 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ilin, Ekaterina A1 - Poppenhäger, Katja A1 - Alvarado-Gómez, Julián David T1 - Localizing flares to understand stellar magnetic fields and space weather in exo-systems JF - Astronomische Nachrichten = Astronomical notes N2 - Stars are uniform spheres, but only to first order. The way in which stellar rotation and magnetism break this symmetry places important observational constraints on stellar magnetic fields, and factors in the assessment of the impact of stellar activity on exoplanet atmospheres. The spatial distribution of flares on the solar surface is well known to be nonuniform, but elusive on other stars. We briefly review the techniques available to recover the loci of stellar flares, and highlight a new method that enables systematic flare localization directly from optical light curves. We provide an estimate of the number of flares we may be able to localize with the Transiting Exoplanet Survey Satellite, and show that it is consistent with the results obtained from the first full sky scan of the mission. We suggest that nonuniform flare latitude distributions need to be taken into account in accurate assessments of exoplanet habitability. KW - stars KW - activity - stars KW - flare - stars KW - magnetic fields - methods KW - data KW - analysis Y1 - 2022 U6 - https://doi.org/10.1002/asna.20210111 SN - 1521-3994 VL - 343 IS - 4 PB - Berlin CY - Wiley-VCH ER - TY - JOUR A1 - Foster, Grace A1 - Poppenhäger, Katja T1 - Identifying interesting planetary systems for future X-ray observations JF - Astronomische Nachrichten = Astronomical notes N2 - X-ray observations of star-planet systems are important to grow our understanding of exoplanets; these observations allow for studies of photoevaporation of the exoplanetary atmosphere, and in some cases even estimations of the size of the outer planetary atmosphere. The German-Russian eROSITA instrument onboard the SRG (Spectrum Roentgen Gamma) mission is performing the first all-sky X-ray survey since the 1990s, and provides X-ray fluxes and spectra of exoplanet host stars over a much larger volume than was accessible before. Using new eROSITA data as well as archival data from XMM-Newton, Chandra, and ROSAT, we estimate mass-loss rates of exoplanets under an energy-limited escape scenario and identify several exoplanets with strong X-ray irradiation and expected mass loss that are amenable to follow-up observations at other wavelengths. We model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like and estimate the observable X-ray transmission spectrum for a typical hot Jupiter-type exoplanet. KW - planets and satellites KW - general KW - stars KW - activity KW - coronae KW - planetary systems KW - X-rays Y1 - 2022 U6 - https://doi.org/10.1002/asna.20220007 SN - 1521-3994 VL - 343 IS - 4 PB - Wiley-VCH CY - Berlin ER -