TY - THES A1 - Serrano, Paloma T1 - Methanogens from Siberian permafrost as models for life on Mars : response to simulated martian conditions and biosignature characterization T1 - Methanogene Archaeen aus sibirischen Permafrost als Modelle für Leben auf dem Mars N2 - Mars is one of the best candidates among planetary bodies for supporting life. The presence of water in the form of ice and atmospheric vapour together with the availability of biogenic elements and energy are indicators of the possibility of hosting life as we know it. The occurrence of permanently frozen ground – permafrost, is a common phenomenon on Mars and it shows multiple morphological analogies with terrestrial permafrost. Despite the extreme inhospitable conditions, highly diverse microbial communities inhabit terrestrial permafrost in large numbers. Among these are methanogenic archaea, which are anaerobic chemotrophic microorganisms that meet many of the metabolic and physiological requirements for survival on the martian subsurface. Moreover, methanogens from Siberian permafrost are extremely resistant against different types of physiological stresses as well as simulated martian thermo-physical and subsurface conditions, making them promising model organisms for potential life on Mars. The main aims of this investigation are to assess the survival of methanogenic archaea under Mars conditions, focusing on methanogens from Siberian permafrost, and to characterize their biosignatures by means of Raman spectroscopy, a powerful technology for microbial identification that will be used in the ExoMars mission. For this purpose, methanogens from Siberian permafrost and non-permafrost habitats were subjected to simulated martian desiccation by exposure to an ultra-low subfreezing temperature (-80ºC) and to Mars regolith (S-MRS and P-MRS) and atmospheric analogues. They were also exposed to different concentrations of perchlorate, a strong oxidant found in martian soils. Moreover, the biosignatures of methanogens were characterized at the single-cell level using confocal Raman microspectroscopy (CRM). The results showed survival and methane production in all methanogenic strains under simulated martian desiccation. After exposure to subfreezing temperatures, Siberian permafrost strains had a faster metabolic recovery, whereas the membranes of non-permafrost methanogens remained intact to a greater extent. The strain Methanosarcina soligelidi SMA-21 from Siberian permafrost showed significantly higher methane production rates than all other strains after the exposure to martian soil and atmospheric analogues, and all strains survived the presence of perchlorate at the concentration on Mars. Furthermore, CRM analyses revealed remarkable differences in the overall chemical composition of permafrost and non-permafrost strains of methanogens, regardless of their phylogenetic relationship. The convergence of the chemical composition in non-sister permafrost strains may be the consequence of adaptations to the environment, and could explain their greater resistance compared to the non-permafrost strains. As part of this study, Raman spectroscopy was evaluated as an analytical technique for remote detection of methanogens embedded in a mineral matrix. This thesis contributes to the understanding of the survival limits of methanogenic archaea under simulated martian conditions to further assess the hypothetical existence of life similar to methanogens on the martian subsurface. In addition, the overall chemical composition of methanogens was characterized for the first time by means of confocal Raman microspectroscopy, with potential implications for astrobiological research. N2 - Der Mars ist unter allen Planeten derjenige, der aufgrund verschiedener Faktoren am wahrscheinlichsten Leben ermöglichen kann. Das Vorhandensein von Wasser in Form von Eis und atmosphärischem Dampf zusammen mit der Verfügbarkeit biogener Elemente sowie Energie sind Indikatoren für die Möglichkeit, Leben, wie wir es kennen, zu beherbergen. Das Auftreten von dauerhaft gefrorenen Böden, oder auch Permafrost, ist ein verbreitetes Phänomen auf dem Mars. Dabei zeigen sich vielfältige morphologische Analogien zum terrestrischen Permafrost. Permafrostgebiete auf der Erde, welche trotz extremer, Bedingungen durch eine große Zahl und Vielfalt mikrobieller Gemeinschaften besiedelt sind, sind hinsichtlich möglicher Habitate auf dem Mars die vielversprechendste Analogie. Die meisten methanogenen Archaeen sind anaerobe, chemolithotrophe Mikroorganismen, die auf der Marsoberfläche viele der metabolischen und physiologischen Erfordernisse zum Überleben vorfinden. Methanogene Archaeen aus dem sibirischen Permafrost sind zudem extrem resistent gegenüber unterschiedlichen Formen von physiologischem Stress sowie simulierten thermo-physikalischen Marsbedingungen. Die Hauptziele dieser Untersuchung bestehen darin, das Überleben der methanogenen Archaeen unter Marsbedingungen zu beurteilen, wobei der Fokus auf methanogenen Archaeen aus dem sibirischen Permafrost liegt, sowie deren Biosignaturen mit Hilfe der Raman-Spektroskopie zu charakterisieren, einer starken Technologie zur mikrobiellen Identifikation, welche bei der ExoMars-Mission zum Einsatz kommen wird. Zu diesem Zweck wurden methanogene Archaeen aus dem sibirischen Permafrost sowie aus Nicht-Permafrost-Habitaten in Simulationen Marsbedingungen ausgesetzt, wie Austrocknung durch Langzeitversuche bei ultraniedrigen Temperaturen unter dem Gefrierpunkt (-80ºC), Mars-analogen Mineralien (S-MRS und P-MRS) sowie einer Marsatmosphäre. Weiterhin wurden die Kulturen verschiedenen Konzentrationen von Magnesiumperchlorat, einem starken Oxidant, der im Marsboden nachgewiesenen wurde, ausgesetzt. Ferner wurden die Biosignaturen einzelner Zellen der methanogenen Archaeen mit Hilfe der konfokalen Raman-Mikrospektroskopie (CRM) charakterisiert. Die Ergebnisse zeigten für alle untersuchten methanogenen Stämme Überleben und Methanbildung, nachdem diese simulierten Austrocknungsbedingungen ausgesetzt worden waren. Nach Versuchen mit Temperaturen unter dem Gefrierpunkt zeigten die Stämme aus dem sibirischen Permafrost eine schnellere Wiederaufnahme der Stoffwechseltätigkeit, wohingegen bei den Referenzorganismen aus Nicht-Permafrost-Habitaten die Zell¬membranen im größeren Ausmaß intakt blieben. Der Stamm Methanosarcina soligelidi SMA-21 aus dem sibirischen Permafrost zeigte nach dem Belastungstest mit Marsboden und Mars-analoger Atmosphäre signifikant höhere Methanbildungsraten. Zudem überlebten alle untersuchten Stämme die Zugabe von Magnesiumperchlorat in der entsprechenden Konzentration, die auf dem Mars vorkommt. Weiterhin konnten durch die Raman-Spektroskopie beachtliche Unterschiede in der chemischen Zusammensetzung zwischen methanogenen Archaeen aus Permafrost- und Nicht-Permafrost-Habitaten, trotz ihrer phylogenetischen Verwandtschaft, ermittelt werden. Die Konvergenz der chemischen Zusammensetzung der Permafrost-Stämme könnte das Resultat ihrer Anpassung an die Umgebung sein, was auch die Unterschiede hinsichtlich ihrer Resistenz verglichen mit Nicht-Permafrost-Stämmen erklären könnte. Als Teil dieser Studie wurde die Raman-Spektroskopie als Analyse-Technik zur Ferndetektion von methanogenen Archaeen, welche in eine Mineral-Matrix eingebettet sind, evaluiert. Diese Dissertation trägt zu einem besseren Verständnis hinsichtlich der Grenzen für ein Überleben von methanogenen Archaeen unter simulierten Marsbedingungen bei und damit zu einer Beurteilung der Hypothese, ob es ähnliches Leben unter der Marsoberfläche geben könnte. Darüber hinaus wurde erstmalig die chemische Zusammensetzung von methanogenen Archaeen mit Hilfe der Raman-Mikrospektroskopie charakterisiert. Dieser Technologie kommt eine wesentliche Bedeutung für weitere Forschungstätigkeit in der Astrobiologie zu. KW - Methanogene Archaeen KW - sibirischen Permafrost KW - Mars KW - Raman Spektroskopie KW - Biosignaturen KW - methanogenic archaea KW - Siberian permafrost KW - Mars KW - Raman spectroscopy KW - biosignatures Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72299 ER - TY - THES A1 - de Vera, Jean-Pierre Paul T1 - The relevance of ecophysiology in astrobiology and planetary research T1 - Die Relevanz der Ökophysiologie in der Astrobiologie und Planetenforschung BT - implications for the characterization of the habitability of planets and biosignatures BT - Implikationen für die Charakterisierung der Habitabilität von Planeten und Biosignaturen N2 - Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of “Ecophysiology” and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit. N2 - Ökophysiologische Prozesse sind durch Interaktionen der Organismen mit der Umwelt in ihrem Habitat, durch ihren Grad der Anpassungsfähigkeit, dem Grad der Resistenz als auch durch die Begrenzungen des Lebens in einer sich verändernden Umwelt gekennzeichnet. Die hier vorliegende Studie konzentriert sich auf die Ergebnisse, die durch die Anwendung der Methoden aus der wissenschaftlichen Disziplin „Ökophysiologie“ erzielt wurden und erlaubt eine Erweiterung dieses wissenschaftlichen Kontextes mit mehr universalem Charakter. Die vorliegende Ökophysiologische Arbeit bildet die Grundlage für eine Klassifizierung und Erkundung des Grades der Habitabilität eines anderen Planeten wie dem Mars durch experimentelle Ansätze. Sie zeigt auch neue Wege für die Identifizierung von Schlüsselmolekülen, die eine besondere Rolle in physiologischen Prozessen getesteter Organismen spielt, um auch als mögliche Biosignaturen für zukünftige Weltraumerkundungsmissionen mit dem Ziel der Suche nach Leben im All zu dienen. Das wirkt sich auch im besonderen Maße auf das sich neu ausbildende wissenschaftliche Feld der Astrobiologie aus. Die Astrobiologie befaßt sich mit der Erforschung des Ursprungs, der Entwicklung, der Verbreitung und Zukunft des Lebens im Universum. Die drei grundlegenden Fragen, die sich hinter dieser Definition verbergen, sind: wie entstand und entwickelte sich das Leben? Gibt es Leben außerhalb der Erde, und falls ja, wie können wir es nachweisen? Was ist die Zukunft des Lebens auf der Erde und im Universum? Das bedeutet, dass dieses viele Disziplinen umfassende Arbeitsfeld die Suche nach einer anderen habitablen Umwelt in unserem Sonnensystem und anderen habitablen Planeten außerhalb unseres Sonnensystems, die Suche nach der Evidenz präbiotischer Chemie und Leben auf dem Mars und anderen Himmelskörpern in unserem Sonnensystem, wie beispielsweise auf den Eismonden des Jupiter- und Saturnsystems, Labor- und Feldforschung bis hin zu den Ursprüngen und der Evolution des Lebens auf der Erde beinhaltet und Untersuchungen über das Potential von Leben, sich den Herausforderungen auf der Erde und im All anzupassen, mit einschließt. Zu diesem Zweck wurde eine ganzheitliche Forschungsstrategie angewendet, welche die Feldforschung, Laborforschung mit Planetensimulations-Experimenten und die Forschung im All(insbesondere die Untersuchungen im nahen Erdorbit) miteinander verbindet. KW - astrobiology KW - eco-physiology KW - planetary simulation KW - biosignatures KW - habitability KW - Astrobiologie KW - Ökophysiologie KW - Planetensimulation KW - Biosignaturen KW - Habitabilität Y1 - 2018 ER -