TY - JOUR A1 - McDowell, Michelle A1 - Kause, Astrid T1 - Communicating uncertainties about the effects of medical interventions using different display formats JF - Risk analysis : an international journal N2 - Communicating uncertainties in scientific evidence is important to accurately reflect scientific knowledge , increase public understanding of uncertainty, and to signal transparency and honesty in reporting. While techniques have been developed to facilitate the communication of uncertainty, many have not been empirically tested, compared for communicating different types of uncertainty, or their effects on different cognitive, trust, and behavioral outcomes have not been evaluated. The present study examined how a point estimate, imprecise estimate, conflicting estimates, or a statement about the lack of evidence about treatment effects, influenced participant's responses to communications about medical evidence. For each type of uncertainty, we adapted three display formats to communicate the information: tables, bar graphs, and icon arrays. We compared participant's best estimates of treatment effects, as well as effects on recall, subjective evaluations (understandability and usefuleness), certainty perceptions, perceptions of trustworthiness of the information, and behavioral intentions. We did not find any detrimental effects from communicating imprecision or conflicting estimates relative to a point estimate across any outcome. Furthermore, there were more favorable responses to communicating imprecision or conflicting estimates relative to lack of evidence, where participants estimated the treatment would improve outcomes by 30-50% relative to a placebo. There were no differences across display formats, suggesting that, if well-designed, it may not matter which format is used. Future research on specific display formats or uncertainty types and with larger sample sizes would be needed to detect small effects. Implications for the communication of uncertainty are discussed. KW - risk communication KW - uncertainty KW - visual displays Y1 - 2021 U6 - https://doi.org/10.1111/risa.13739 SN - 0272-4332 SN - 1539-6924 VL - 41 IS - 12 SP - 2220 EP - 2239 PB - Wiley CY - Hoboken ER - TY - THES A1 - Gómez Zapata, Juan Camilo T1 - Towards unifying approaches in exposure modelling for scenario-based multi-hazard risk assessments N2 - This cumulative thesis presents a stepwise investigation of the exposure modelling process for risk assessment due to natural hazards while highlighting its, to date, not much-discussed importance and associated uncertainties. Although “exposure” refers to a very broad concept of everything (and everyone) that is susceptible to damage, in this thesis it is narrowed down to the modelling of large-area residential building stocks. Classical building exposure models for risk applications have been constructed fully relying on unverified expert elicitation over data sources (e.g., outdated census datasets), and hence have been implicitly assumed to be static in time and in space. Moreover, their spatial representation has also typically been simplified by geographically aggregating the inferred composition onto coarse administrative units whose boundaries do not always capture the spatial variability of the hazard intensities required for accurate risk assessments. These two shortcomings and the related epistemic uncertainties embedded within exposure models are tackled in the first three chapters of the thesis. The exposure composition of large-area residential building stocks is studied on the scope of scenario-based earthquake loss models. Then, the proposal of optimal spatial aggregation areas of exposure models for various hazard-related vulnerabilities is presented, focusing on ground-shaking and tsunami risks. Subsequently, once the experience is gained in the study of the composition and spatial aggregation of exposure for various hazards, this thesis moves towards a multi-hazard context while addressing cumulative damage and losses due to consecutive hazard scenarios. This is achieved by proposing a novel method to account for the pre-existing damage descriptions on building portfolios as a key input to account for scenario-based multi-risk assessment. Finally, this thesis shows how the integration of the aforementioned elements can be used in risk communication practices. This is done through a modular architecture based on the exploration of quantitative risk scenarios that are contrasted with social risk perceptions of the directly exposed communities to natural hazards. In Chapter 1, a Bayesian approach is proposed to update the prior assumptions on such composition (i.e., proportions per building typology). This is achieved by integrating high-quality real observations and then capturing the intrinsic probabilistic nature of the exposure model. Such observations are accounted as real evidence from both: field inspections (Chapter 2) and freely available data sources to update existing (but outdated) exposure models (Chapter 3). In these two chapters, earthquake scenarios with parametrised ground motion fields were transversally used to investigate the role of such epistemic uncertainties related to the exposure composition through sensitivity analyses. Parametrised scenarios of seismic ground shaking were the hazard input utilised to study the physical vulnerability of building portfolios. The second issue that was investigated, which refers to the spatial aggregation of building exposure models, was investigated within two decoupled vulnerability contexts: due to seismic ground shaking through the integration of remote sensing techniques (Chapter 3); and within a multi-hazard context by integrating the occurrence of associated tsunamis (Chapter 4). Therein, a careful selection of the spatial aggregation entities while pursuing computational efficiency and accuracy in the risk estimates due to such independent hazard scenarios (i.e., earthquake and tsunami) are discussed. Therefore, in this thesis, the physical vulnerability of large-area building portfolios due to tsunamis is considered through two main frames: considering and disregarding the interaction at the vulnerability level, through consecutive and decoupled hazard scenarios respectively, which were then contrasted. Contrary to Chapter 4, where no cumulative damages are addressed, in Chapter 5, data and approaches, which were already generated in former sections, are integrated with a novel modular method to ultimately study the likely interactions at the vulnerability level on building portfolios. This is tested by evaluating cumulative damages and losses after earthquakes with increasing magnitude followed by their respective tsunamis. Such a novel method is grounded on the possibility of re-using existing fragility models within a probabilistic framework. The same approach is followed in Chapter 6 to forecast the likely cumulative damages to be experienced by a building stock located in a volcanic multi-hazard setting (ash-fall and lahars). In that section, special focus was made on the manner the forecasted loss metrics are communicated to locally exposed communities. Co-existing quantitative scientific approaches (i.e., comprehensive exposure models; explorative risk scenarios involving single and multiple hazards) and semi-qualitative social risk perception (i.e., level of understanding that the exposed communities have about their own risk) were jointly considered. Such an integration ultimately allowed this thesis to also contribute to enhancing preparedness, science divulgation at the local level as well as technology transfer initiatives. Finally, a synthesis of this thesis along with some perspectives for improvement and future work are presented. N2 - Diese kumulative Diplomarbeit stellt eine schrittweise Untersuchung des Expositionsmodellierungsprozesses für die Risikobewertung durch Naturgefahren dar und weist auf seine bisher wenig diskutierte Bedeutung und die damit verbundenen Unsicherheiten hin. Obwohl sich „Exposition“ auf einen sehr weiten Begriff von allem (und jedem) bezieht, der für Schäden anfällig ist, wird er in dieser Arbeit auf die Modellierung von großräumigen Wohngebäudebeständen eingeengt. Klassische Gebäudeexpositionsmodelle für Risikoanwendungen wurden vollständig auf der Grundlage unbestätigter Expertenerhebungen über Datenquellen (z. B. veraltete Volkszählungsdatensätze) erstellt und wurden daher implizit als zeitlich und räumlich statisch angenommen. Darüber hinaus wurde ihre räumliche Darstellung typischerweise auch vereinfacht, indem die abgeleitete Zusammensetzung geografisch auf grobe Verwaltungseinheiten aggregiert wurde, deren Grenzen nicht immer die räumliche Variabilität der Gefahrenintensitäten erfassen, die für genaue Risikobewertungen erforderlich sind. Diese beiden Mängel und die damit verbundenen epistemischen Unsicherheiten, die in Expositionsmodellen eingebettet sind, werden in den ersten drei Kapiteln der Dissertation verfolgt. Die Exposure-Zusammensetzung von großflächigen Wohngebäudebeständen wird im Rahmen szenariobasierter Erdbebenschadenmodelle untersucht. Anschließend wird der Vorschlag optimaler räumlicher Aggregationsbereiche von Expositionsmodellen für verschiedene gefahrenbezogene Anfälligkeiten präsentiert, wobei der Schwerpunkt auf Bodenerschütterungs- und Tsunami-Risiken liegt. Anschließend, sobald die Erfahrung in der Untersuchung der Zusammensetzung und räumlichen Aggregation der Exposition für verschiedene Gefahren gesammelt wurde, bewegt sich diese Arbeit in Richtung eines Kontextes mit mehreren Gefahren, während sie sich mit kumulativen Schäden und Verlusten aufgrund aufeinanderfolgender Gefahrenszenarien befasst. Dies wird erreicht, indem eine neuartige Methode vorgeschlagen wird, um die bereits bestehenden Schadensbeschreibungen an Gebäudeportfolios als Schlüsseleingabe für die Berücksichtigung einer szenariobasierten Multi-Risiko-Bewertung zu berücksichtigen. Abschließend zeigt diese Arbeit, wie die Integration der oben genannten Elemente in der Risikokommunikation genutzt werden kann. Dies erfolgt durch eine modulare Architektur, die auf der Untersuchung quantitativer Risikoszenarien basiert, die mit der sozialen Risikowahrnehmung der direkt von Naturgefahren betroffenen Gemeinschaften kontrastiert werden. In Kapitel 1 wird ein bayesianischer Ansatz vorgeschlagen, um die früheren Annahmen zu einer solchen Zusammensetzung (d. h. Anteile pro Gebäudetypologie) zu aktualisieren. Dies wird erreicht, indem hochwertige reale Beobachtungen integriert und dann die intrinsische Wahrscheinlichkeitsnatur des Expositionsmodells erfasst wird. Solche Beobachtungen werden sowohl aus Feldbegehungen (Kapitel 2) als auch aus frei verfügbaren Datenquellen zur Aktualisierung bestehender (aber veralteter) Expositionsmodelle (Kapitel 3) als echte Beweise gewertet. In diesen beiden Kapiteln wurden Erdbebenszenarien mit parametrisierten Bodenbewegungsfeldern transversal verwendet, um die Rolle solcher epistemischen Unsicherheiten in Bezug auf die Expositionszusammensetzung durch Sensitivitätsanalysen zu untersuchen. Parametrisierte Szenarien seismischer Bodenerschütterungen waren der Gefahreneingang, der verwendet wurde, um die physische Anfälligkeit von Gebäudeportfolios zu untersuchen. Das zweite untersuchte Problem, das sich auf die räumliche Aggregation von Gebäudeexpositionsmodellen bezieht, wurde in zwei entkoppelten Vulnerabilitätskontexten untersucht: durch seismische Bodenerschütterungen durch die Integration von Fernerkundungstechniken (Kapitel 3); und innerhalb eines Multi-Hazard-Kontextes durch Einbeziehung des Auftretens assoziierter Tsunamis (Kapitel 4). Darin wird eine sorgfältige Auswahl der räumlichen Aggregationseinheiten bei gleichzeitigem Streben nach Recheneffizienz und Genauigkeit bei den Risikoschätzungen aufgrund solcher unabhängiger Gefahrenszenarien (d. h. Erdbeben und Tsunami) diskutiert. Daher wird in dieser Arbeit die physische Vulnerabilität von großen Gebäudeportfolios durch Tsunamis durch zwei Hauptrahmen betrachtet: Berücksichtigung und Nichtberücksichtigung der Wechselwirkung auf der Vulnerabilitätsebene, durch aufeinanderfolgende bzw. entkoppelte Gefahrenszenarien, die dann gegenübergestellt wurden. Im Gegensatz zu Kapitel 4, wo keine kumulativen Schäden angesprochen werden, werden in Kapitel 5 Daten und Ansätze, die bereits in früheren Abschnitten generiert wurden, mit einer neuartigen modularen Methode integriert, um letztendlich die wahrscheinlichen Wechselwirkungen auf der Schwachstellenebene beim Aufbau von Portfolios zu untersuchen. Dies wird getestet, indem kumulative Schäden und Verluste nach Erdbeben mit zunehmender Magnitude gefolgt von den jeweiligen Tsunamis bewertet werden. Eine solche neuartige Methode basiert auf der Möglichkeit, bestehende Fragilitätsmodelle innerhalb eines probabilistischen Rahmens wiederzuverwenden. Derselbe Ansatz wird in Kapitel 6 verfolgt, um die wahrscheinlichen kumulativen Schäden zu prognostizieren, denen ein Gebäudebestand ausgesetzt sein wird, der sich in einer vulkanischen Umgebung mit mehreren Gefahren (Aschefall und Lahare) befindet. In diesem Abschnitt wurde besonderes Augenmerk auf die Art und Weise gelegt, wie die prognostizierten Verlustmetriken an lokal exponierte Gemeinden kommuniziert werden. Koexistierende quantitative wissenschaftliche Ansätze (d. h. umfassende Expositionsmodelle; explorative Risikoszenarien mit Einzel- und Mehrfachgefahren) und semiqualitative soziale Risikowahrnehmung (d. h. Grad des Verständnisses, das die exponierten Gemeinschaften über ihr eigenes Risiko haben) wurden gemeinsam berücksichtigt. Eine solche Integration ermöglichte es dieser Arbeit schließlich auch, zur Verbesserung der Bereitschaft, der wissenschaftlichen Verbreitung auf lokaler Ebene sowie zu Technologietransferinitiativen beizutragen. Abschließend wird eine Zusammenfassung dieser These zusammen mit einigen Perspektiven für Verbesserungen und zukünftige Arbeiten präsentiert. KW - exposure KW - multi-hazard KW - risk analysis KW - risk communication KW - uncertainty analysis KW - tsunami risk KW - spatial aggregation KW - seismic risk KW - Expositionsmodellen KW - Multi-Hazard KW - Risikoanalyse KW - Risikokommunikation KW - seismisches Risiko KW - räumliche Aggregation KW - Tsunami-Risiko KW - Unsicherheitsanalyse Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586140 ER - TY - JOUR A1 - Bubeck, Philip A1 - Botzen, W. J. Wouter A1 - Laudan, Jonas A1 - Aerts, Jeroen C. J. H. A1 - Thieken, Annegret T1 - Insights into flood-coping appraisals of protection motivation theory BT - Empirical evidence from Germany and France JF - Risk analysis N2 - Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals’ coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects. KW - Coping appraisal KW - floods KW - protection motivation theory (PMT) KW - risk communication KW - social vulnerability Y1 - 2018 U6 - https://doi.org/10.1111/risa.12938 SN - 0272-4332 SN - 1539-6924 VL - 38 IS - 6 SP - 1239 EP - 1257 PB - Wiley CY - Hoboken ER -