TY - JOUR A1 - Hering, Fabio A1 - Stinnesbeck, Wolfgang A1 - Folmeister, Jens A1 - Frey, Eberhard A1 - Stinnesbeck, Sarah A1 - Aviles, Jeronimo A1 - Nunez, Eugenio Aceves A1 - Gonzalez, Arturo A1 - Mata, Alejandro Terrazas A1 - Benavente, Martha Elena A1 - Rojas, Carmen A1 - Morlet, Adriana Velazquez A1 - Frank, Norbert A1 - Zell, Patrick A1 - Becker, Julia T1 - The Chan Hol cave near Tulum (Quintana Roo, Mexico) BT - evidence for long-lasting human presence during the early to middle Holocene JF - Journal of quaternary science N2 - Numerous charcoal accumulations discovered in the submerged Chan Hol cave near Tulum, Quintana Roo, Mexico, have been C-14-dated revealing ages between 8110 +/- 28 C-14 a BP (9122-8999 cal a BP) and 7177 +/- 27 C-14 a BP (8027-7951 cal a BP). These charcoal concentrations, interpreted here as ancient illumination sites, provide strong evidence that the Chan Hol cave was dry and accessible during that time interval. Humans used the cave for at least 1200 years during the early and middle Holocene, before access was successively interrupted by global sea level rise and flooding of the cave system. Our data thus narrow the gap between an early settlement in the Tulum area reaching from the late Pleistocene (similar to 13 000 a) to middle Holocene (e.g. 7177 C-14 a BP), and the Maya Formative period at approximately 3000 a bp. Yet, no evidence has been presented to date for human settlement during the similar to 4000-year interval between 7000 and 3000 a. This is remarkable as settlement in other areas of south-eastern Mexico (e.g. Chiapas, Tabasco) and in Guatemala was apparently continuous. KW - charcoal KW - early Holocene KW - human settlement KW - pre-Maya settlement KW - sea level rise KW - submerged cave KW - Yucatan Peninsula Y1 - 2018 U6 - https://doi.org/10.1002/jqs.3025 SN - 0267-8179 SN - 1099-1417 VL - 33 IS - 4 SP - 444 EP - 454 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Dietze, Elisabeth A1 - Mangelsdorf, Kai A1 - Andreev, Andreev A1 - Karger, Cornelia A1 - Schreuder, Laura T. A1 - Hopmans, Ellen C. A1 - Rach, Oliver A1 - Sachse, Dirk A1 - Wennrich, Volker A1 - Herzschuh, Ulrike T1 - Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El’gygytgyn sediments JF - Climate of the Past N2 - Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes. KW - molecular tracers KW - organic aerosols KW - emission factors KW - carbonaceous aerosols KW - pollen records KW - core PG1351 KW - biomass KW - holocene KW - levoglucosan KW - charcoal Y1 - 2020 U6 - https://doi.org/10.5194/cp-16-799-2020 SN - 1814-9332 SN - 1814-9324 VL - 16 IS - 2 SP - 788 EP - 818 PB - Copernicus Publications CY - Göttingen ER - TY - GEN A1 - Dietze, Elisabeth A1 - Mangelsdorf, Kai A1 - Andreev, Andreev A1 - Karger, Cornelia A1 - Schreuder, Laura T. A1 - Hopmans, Ellen C. A1 - Rach, Oliver A1 - Sachse, Dirk A1 - Wennrich, Volker A1 - Herzschuh, Ulrike T1 - Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El’gygytgyn sediments T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1439 KW - molecular tracers KW - organic aerosols KW - emission factors KW - carbonaceous aerosols KW - pollen records KW - core PG1351 KW - biomass KW - holocene KW - levoglucosan KW - charcoal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516843 SN - 1866-8372 IS - 2 ER -