TY - JOUR A1 - Tanne, Johannes A1 - Jeoung, Jae-Hun A1 - Peng, Lei A1 - Yarman, Aysu A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Direct Electron Transfer and Bioelectrocatalysis by a Hexameric, Heme Protein at Nanostructured Electrodes JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A nanohybrid consisting of poly(3-aminobenzenesulfonic acid-co-aniline) and multiwalled carbon nanotubes [MWCNT-P(ABS-A)]) on a gold electrode was used to immobilize the hexameric tyrosine-coordinated heme protein (HTHP). The enzyme showed direct electron transfer between the heme group of the protein and the nanostructured surface. Desorption of the noncovalently bound heme from the protein could be excluded by control measurements with adsorbed hemin on aminohexanthiol-modified electrodes. The nanostructuring and the optimised charge characteristics resulted in a higher protein coverage as compared with MUA/MU modified electrodes. The adsorbed enzyme shows catalytic activity for the cathodic H2O2 reduction and oxidation of NADH. KW - HTHP KW - Nanohybrid KW - Poylaniline KW - Multiwalled carbon nanotube Y1 - 2015 U6 - https://doi.org/10.1002/elan.201500231 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 10 SP - 2262 EP - 2267 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Hei, Tobias A1 - Wang, Gui-Chang A1 - Adler, Peter A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors JF - Energy Storage Materials N2 - Strong metal oxide-support interaction is crucial to activate high energy storage modes of carbon-supported hybrid electrodes in ionic liquid-based supercapacitors. Although it is known that conductive supports can influence the electrochemical properties of metal oxides, insights into how metal oxide-support interactions can be exploited to optimize joint energy storage properties are lacking. We report the junction between alpha-Fe2O3 nanosplotches and phosphorus-doped ordered mesoporous carbon (CMK-3-P) with strong covalent anchoring of the metal oxide. The oxide-carbon interaction in CMK-3-P-Fe2O3 is strengthening the junction and charge transfer between Fe2O3 and CMK-3-P. It enhances energy storage by intensifying the interaction between ionic liquid ions and the surface of the electrode. Density functional theory simulations reveal that the strong metal oxide-support interaction increases the adsorption energy of ionic liquid to -4.77 eV as compared to -3.85 eV for a CMK-3Fe(2)O(3) hybrid with weaker binding. In spite of the lower specific surface area and apparently similar energy storage mode, the CMK-3-P-Fe2O3 exhibits superior electrical double-layer capacitor performance with a specific capacitance of 179 F g(-1) at 2 mV s(-1) (0-3.5 V) in comparison to Fe2O3-free CMK-3 and CMK-3-P reference materials. This principle for design of hybrid electrodes can be applicable for future rational design of stable metal oxide-support electrodes for advanced energy storage. KW - Supercapacitor KW - Nanohybrid KW - Iron oxide KW - Ionic liquid KW - Ordering transitions KW - Main text Y1 - 2019 U6 - https://doi.org/10.1016/j.ensm.2019.04.035 SN - 2405-8297 VL - 20 SP - 188 EP - 195 PB - Elsevier CY - Amsterdam ER -