TY - GEN A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 761 KW - voles clethrionomys-glareolus KW - coping styles KW - bank voles KW - behavioral flexibility KW - trade-offs KW - exploratory-behavior KW - mustelid predation KW - social information KW - animal personality KW - stress Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437118 SN - 1866-8372 IS - 761 ER - TY - GEN A1 - Lozada Gobilard, Sissi Donna A1 - Stang, Susanne A1 - Pirhofer-Walzl, Karin A1 - Kalettka, Thomas A1 - Heinken, Thilo A1 - Schröder, Boris A1 - Eccard, Jana A1 - Jasmin Radha, Jasmin T1 - Environmental filtering predicts plant‐community trait distribution and diversity BT - Kettle holes as models of meta‐community systems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 629 KW - biodiversity KW - dispersal KW - disturbance KW - landscape diversity KW - life‐history traits KW - plant diversity KW - seed bank KW - species assembly KW - wetland vegetation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424843 SN - 1866-8372 IS - 629 ER - TY - GEN A1 - Kowalski, Gabriele Joanna A1 - Grimm, Volker A1 - Herde, Antje A1 - Guenther, Anja A1 - Eccard, Jana T1 - Does Animal Personality Affect Movement in Habitat Corridors? BT - Experiments with Common Voles (Microtus arvalis) Using Different Corridor Widths T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Animal personality may affect an animal’s mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 747 KW - activity KW - animal personality KW - wildlife corridors KW - habitat connectivity KW - individual differences KW - rodents Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435770 SN - 1866-8372 IS - 747 ER - TY - GEN A1 - Hoffmann, Julia A1 - Schirmer, Annika A1 - Eccard, Jana T1 - Light pollution affects space use and interaction of two small mammal species irrespective of personality T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark–light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 749 KW - Nighttime illumination KW - Rodents KW - Outdoor enclosure KW - Animal personality KW - Interspecific interactions KW - HIREC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436307 SN - 1866-8372 IS - 749 ER - TY - JOUR A1 - Cornel, Hajo A1 - Trilcke, Peer A1 - Winkler, Kurt A1 - Zimmermann, Matthias A1 - Horn-Conrad, Antje A1 - Engel, Silke A1 - Szameitat, Ulrike A1 - Krafzik, Carolin A1 - Kampe, Heike A1 - Görlich, Petra A1 - Eckardt, Barbara A1 - Eccard, Jana T1 - Portal = Theodor Fontane: Zum 200. Geburtstag BT - Das Potsdamer Universitätsmagazin N2 - Aus dem Inhalt: - Theodor Fontane: Zum 200. Geburtstag - Licht an! - Durch Nacht und Eis T3 - Portal: Das Potsdamer Universitätsmagazin - 01/2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-443528 SN - 1618-6893 IS - 01/2019 ER - TY - GEN A1 - Breedveld, Merel Cathelijne A1 - Folkertsma, Remco A1 - Eccard, Jana T1 - Rodent mothers increase vigilance behaviour when facing infanticide risk T2 - Postprints der Universität Potsdam Mathematisch- Naturwissenschaftliche Reihe N2 - Infanticide, the killing of unrelated young, is widespread and frequently driven by sexual conflict. especially in mammals with exclusive maternal care, infanticide by males is common and females suffer fitness costs. Recognizing infanticide risk and adjusting offspring protection accordingly should therefore be adaptive in female mammals. Using a small mammal (Myodes glareolus) in outdoor enclosures, we investigated whether lactating mothers adjust offspring protection, and potential mate search behaviour, in response to different infanticide risk levels. We presented the scent of the litter’s sire or of a stranger male near the female’s nest, and observed female nest presence and movement by radiotracking. While both scents simulated a mating opportunity, they represented lower (sire) and higher (stranger) infanticide risk. compared to the sire treatment, females in the stranger treatment left their nest more often, showed increased activity and stayed closer to the nest, suggesting offspring protection from outside the nest through elevated alertness and vigilance. females with larger litters spent more time investigating scents and used more space in the sire but not in the stranger treatment. Thus, current investment size affected odour inspection and resource acquisition under higher risk. Adjusting nest protection and resource acquisition to infanticide risk could allow mothers to elicit appropriate (fitness-saving) counterstrategies, and thus, may be widespread. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 766 KW - vole clethrionomys-glareolus KW - male bank voles KW - maternal aggression KW - reproductive strategies KW - offspring-defense KW - myodes-glareolus KW - predation risk KW - prairie vole KW - recognition KW - costs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438074 SN - 1866-8372 IS - 766 ER -