TY - GEN A1 - Teshebaeva, Kanayim A1 - Roessner, Sigrid A1 - Echtler, Helmut Peter A1 - Motagh, Mahdi A1 - Wetzel, Hans-Ulrich A1 - Molodbekov, Bolot T1 - ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan N2 - This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km2 area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to ±17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to −63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 344 KW - interferometric SAR (InSAR) KW - small baseline subset (SBAS) KW - time-series KW - ALOS/PALSAR KW - deep seated landslide KW - very slow moving landslide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400083 ER - TY - CHAP A1 - Rehak, Katrin A1 - Strecker, Manfred A1 - Echtler, Helmut Peter T1 - DEM supported tectonic geomorphology : the Coastal Cordillera of the South-Central Chilean active margin ; [Poster] N2 - Fluvial systems are one of the major features shaping a landscape. They adjust to the prevailing tectonic and climatic setting and therefore are very sensitive markers of changes in these systems. If their response to tectonic and climatic forcing is quantified and if the climatic signal is excluded, it is possible to derive a local deformation history. Here, we investigate fluvial terraces and erosional surfaces in the southern Chilean forearc to assess a long-term geomorphic and hence tectonic evolution. Remote sensing and field studies of the Nahuelbuta Range show that the long-term deformation of the Chilean forearc is manifested by breaks in topography, sequences of differentially uplifted marine, alluvial and strath terraces as well as tectonically modified river courses and drainage basins. We used SRTM-90-data as basic elevation information for extracting and delineating drainage networks. We calculated hypsometric curves as an indicator for basin uplift, stream-length gradient indices to identify stream segments with anomalous slopes, and longitudinal river profiles as well as DS-plots to identify knickpoints and other anomalies. In addition, we investigated topography with elevation-slope graphs, profiles, and DEMs to reveal erosional surfaces. During the first field trip we already measured palaeoflow directions, performed pebble counting and sampled the fluvial terraces in order to apply cosmogenic nuclide dating (10Be, 26Al) as well as provenance analyses. Our preliminary analysis of the Coastal Cordillera indicates a clear segmentation between the northern and southern parts of the Nahuelbuta Range. The Lanalhue Fault, a NW-SE striking fault zone oblique to the plate boundary, defines the segment boundary. Furthermore, we find a complex drainage re-organisation including a drainage reversal and wind gap on the divide between the Tirúa and Pellahuén basins east of the town Tirúa. The coastal basins lost most of their Andean sediment supply areas that existed in Tertiary and in part during early Pleistocene time. Between the Bío-Bío and Imperial rivers no Andean river is recently capable to traverse the Coastal Cordillera, suggesting ongoing Quaternary uplift of the entire range. From the spatial distribution of geomorphic surfaces in this region two uplift signals may be derived: (1) a long-term differential uplift process, active since the Miocene and possibly caused by underplating of subducted trench sediments, (2) a younger, local uplift affecting only the northern part of the Nahuelbuta Range that may be caused by the interaction of the forearc with the subduction of the Mocha Fracture Zone at the latitude of the Arauco peninsula. Our approach thus provides results in our attempt to decipher the characteristics of forearc development of active convergent margins using long-term geomorphic indicators. Furthermore, it is expected that our ongoing assessment will constrain repeatedly active zones of deformation.
Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7224 ER -