TY - THES A1 - Dziourkevitch, Natalia T1 - Interstellar turbulence driven by magneto-rotational instability T1 - Interstellare Turbulenzen hervorgerufen durch magnetische Rotationsinstabilitäten N2 - Origin and symmetry of the observed global magnetic fields in galaxies are not fully understood. We intend to clarify the question of the magnetic field origin and investigate the global action of the magneto-rotational instability (MRI) in galactic disks with the help of 3D global magneto-hydrodynamical (MHD) simulations. The calculations were done with the time-stepping ZEUS 3D code using massive parallelization. The alpha-Omega dynamo is known to be one of the most efficient mechanisms to reproduce the observed global galactic fields. The presence of strong turbulence is a pre-requisite for the alpha-Omega dynamo generation of the regular magnetic fields. The observed magnitude and spatial distribution of turbulence in galaxies present unsolved problems to theoreticians. The MRI is known to be a fast and powerful mechanism to generate MHD turbulence and to amplify magnetic fields. We find that the critical wavelength increases with the increasing of magnetic fields during the simulation, transporting the energy from critical to larger scales. The final structure, if not disrupted by supernovae explosions, is the structure of `thin layers' of thickness of about 100 pcs. An important outcome of all simulations is the magnitude of the horizontal components of the Reynolds and Maxwell stresses. The result is that the MRI-driven turbulence is magnetic-dominated: its magnetic energy exceeds the kinetic energy by a factor of 4. The Reynolds stress is small and less than 1% of the Maxwell stress. The angular momentum transport is thus completely dominated by the magnetic field fluctuations. The volume-averaged pitch angle is always negative with a magnitude of about -30. The non-saturated MRI regime is lasting sufficiently long to fill the time between the galactic encounters, independently of strength and geometry of the initial field. Therefore, we may claim the observed pitch angles can be due to MRI action in the gaseous galactic disks. The MRI is also shown to be a very fast instability with e-folding time proportional to the time of one rotation. Steep rotation curves imply a stronger growth for the magnetic energy due to MRI. The global e-folding time is from 44 Myr to 100 Myr depending on the rotation profile. Therefore, MRI can explain the existence of rather large magnetic field in very young galaxies. We also have reproduced the observed rms values of velocities in the interstellar turbulence as it was observed in NGC 1058. We have shown with the simulations that the averaged velocity dispersion of about 5 km/s is a typical number for the MRI-driven turbulence in galaxies, which agrees with observations. The dispersion increases outside of the disk plane, whereas supernovae-driven turbulence is found to be concentrated within the disk. In our simulations the velocity dispersion increases a few times with the heights. An additional support to the dynamo alpha-effect in the galaxies is the ability of the MRI to produce a mix of quadrupole and dipole symmetries from the purely vertical seed fields, so it also solves the seed-fields problem of the galactic dynamo theory. The interaction of magneto-rotational instability and random supernovae explosions remains an open question. It would be desirable to run the simulation with the supernovae explosions included. They would disrupt the calm ring structure produced by global MRI, may be even to the level when we can no longer blame MRI to be responsible for the turbulence. N2 - Die Beobachtung polarisierter Synchrotronstrahlung mit modernen Radioteleskopen zeigen die Existenz von großskaligen Magnetfeldern in Galaxien. Mit den ständig verbesserten Beobachtungsinstrumenten findet man Magnetfelder in immer mehr Galaxien, so dass man annehmen kann, Magnetfelder treten mehr oder weniger in allen Galaxien auf. Selbst in sehr jungen Galaxien (damit weit entfernten) wurden schon Magnetfelder von einigen mikroG gefunden. Eine mögliche Erklärung für die Entstehung der Magnetfeldern ist die Wirkung eines turbulenten Dynamos. Neben Supernova-Explosionen können magnetische Instabilitäten eine Quelle für die Turbulenz im interstellaren Medium sein. So werden Galaxien bei Anwesenheit eines schwachen Magnetfeldes auf Grund der "Magneto-Rotations-Instabilität" (MRI) turbulent. Die globale Entwicklung des interstellaren Gases in Galaxien unter Wirkung der MRI ist in der vorliegenden Arbeit betrachtet worden. Mit drei-dimensionalen numerischen Simulationen auf großen Clusterrechnern wurde die zeitliche Entwicklung des Geschwindigkeitsfeldes und der Magnetfelder untersucht. Für die extrem rechenintensiven globalen Modelle wurde ein hochgradig parallelisierbares Rechenprogramm zur Lösung der MHD-Gleichungen an die Problemstellung angepasst, in der Rechenzeit optimiert und ausführlich getestet. Es konnte erstmalig die zeitliche Entwicklung des interstellaren Gases unter dem Einfluss eines schwachen Magnetfeldes über mehrere Milliarden Jahre verfolgt werden. In der galaktischen Scheibe entwickelt sich Turbulenz mit einer Geschwindigkeitsdispersion von einigen km/s und großskalige Magnetfelder von einigen mikroG, genau wie in realen Galaxien beobachtet. Damit konnte der Nachweis erbracht werden, dass das interstellare Gas durch Wirkung der MRI auch bei geringer Sternaktivität Turbulenz entwickelt, wie es in einigen ruhigen Galaxien auch beobachtet wird. Ein anderes wichtiges Resultat ist die Entstehung großskaliger Magnetfelder aus kleinskaligen Strukturen in der Art eines turbulenten Dynamos. Die Wachstumsrate der magnetischen Energie geht bei diesem Prozess mit der Umlaufzeit, schnell genug um auch Magnetfelder mit einigen mikroG in sehr jungen Galaxien zu erreichen. Die Entstehung von Magnetfeldern aus der MRI löst auch die bisher ungeklärte Frage nach der Geometrie der Saatfelder für turbulente Dynamos. KW - Magnetohydrodynamik KW - Instabilität KW - Turbulenz KW - Galaxie KW - Dynamo KW - MHD KW - MRI KW - spiral galaxies KW - dynamo KW - turbulence Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5306 ER - TY - THES A1 - Boeche, Corrado T1 - Chemical gradients in the Milky Way from unsupervised chemical abundances measurements of the RAVE spectroscopic data set T1 - Chemische Gradienten in der Milchstraße aus unüberwachten chemischen Häufigkeitsmessungen aus dem RAVE spektroskopischen Datenset N2 - The present thesis was born and evolved within the RAdial Velocity Experiment (RAVE) with the goal of measuring chemical abundances from the RAVE spectra and exploit them to investigate the chemical gradients along the plane of the Galaxy to provide constraints on possible Galactic formation scenarios. RAVE is a large spectroscopic survey which aims to observe spectroscopically ~10^6 stars by the end of 2012 and measures their radial velocities, atmospheric parameters and chemical abundances. The project makes use of the UK Schmidt telescope at Australian Astronomical Observatory (AAO) in Siding Spring, Australia, equipped with the multiobject spectrograph 6dF. To date, RAVE collected and measured more than 450,000 spectra. The precision of the chemical abundance estimations depends on the reliability of the atomic and atmosphere parameters adopted (in particular the oscillator strengths of the absorption lines and the effective temperature, gravity, and metallicity of the stars measured). Therefore we first identified 604 absorption lines in the RAVE wavelength range and refined their oscillator strengths with an inverse spectral analysis. Then, we improved the RAVE stellar parameters by modifying the RAVE pipeline and the spectral library the pipeline rely on. The modifications removed some systematic errors in stellar parameters discovered during this work. To obtain chemical abundances, we developed two different processing pipelines. Both of them perform chemical abundances measurements by assuming stellar atmospheres in Local Thermodynamic Equilibrium (LTE). The first one determines elements abundances from equivalent widths of absorption lines. Since this pipeline showed poor sensibility on abundances relative to iron, it has been superseded. The second one exploits the chi^2 minimization technique between observed and model spectra. Thanks to its precision, it has been adopted for the creation of the RAVE chemical catalogue. This pipeline provides abundances with uncertains of about ~0.2dex for spectra with signal-to-noise ratio S/N>40 and ~0.3dex for spectra with 20>S/N>40. For this work, the pipeline measured chemical abundances up to 7 elements for 217,358 RAVE stars. With these data we investigated the chemical gradients along the Galactic radius of the Milky Way. We found that stars with low vertical velocities |W| (which stay close to the Galactic plane) show an iron abundance gradient in agreement with previous works (~-0.07$ dex kpc^-1) whereas stars with larger |W| which are able to reach larger heights above the Galactic plane, show progressively flatter gradients. The gradients of the other elements follow the same trend. This suggests that an efficient radial mixing acts in the Galaxy or that the thick disk formed from homogeneous interstellar matter. In particular, we found hundreds of stars which can be kinetically classified as thick disk stars exhibiting a chemical composition typical of the thin disk. A few stars of this kind have already been detected by other authors, and their origin is still not clear. One possibility is that they are thin disk stars kinematically heated, and then underwent an efficient radial mixing process which blurred (and so flattened) the gradient. Alternatively they may be a transition population" which represents an evolutionary bridge between thin and thick disk. Our analysis shows that the two explanations are not mutually exclusive. Future follow-up high resolution spectroscopic observations will clarify their role in the Galactic disk evolution. N2 - Die vorliegende Doktorarbeit wurde im Rahmen des RAdial Velocity Experiment (RAVE) angefertigt. Ihr Ziel ist es, chemische Elementhäufigkeiten an RAVE-Spektren zu messen und zur Untersuchung chemischer Gradienten in der Milchstrassenebene zu benutzen, um verschieden Szenarien der Galaxienentstehung einzugrenzen. RAVE ist eine große spektrokopische Durchmusterung, deren Ziel es ist, bis zum Ende des Jahres 2012 insgesamt 10^6 Sterne zu spektroskopieren, um deren Radialgeschwindigkeiten, sternatmosphärische Parameter und chemische Häufigkeiten zu messen. Das Projekt benutzt das UK Schmidt Teleskop am Australian Astronomical Observatory (AAO) in Siding Spring, Australien, welches mit dem Multiobjekt-Spektrographen 6dF bestückt ist. Bis heute hat RAVE die Spektren von mehr als 450,000 Sternen gesammelt und untersucht. Die Genauigkeit, mit der die Elementhäufigkeiten abgeschätzt werden können, hängt von der Zuverlässigkeit der verwendeten Parameter, (insbesondere der Oszillatorstärken der Absorptionslinien sowie von der effektiven Temperatur, Schwerebeschleunigung und der Metallizität des gemessenen Sterns) ab. Daher identifizierten wir zunächst 604 Absorptionslinien im Wellenlängenbereich von RAVE und verbesserten deren Oszillatorstärken durch eine inverse Spektralanalyse. Dann wurden die stellaren Parameter von RAVE verbessert, indem die RAVE Pipeline und die stellaren Parameter, auf denen sie beruht, modifiziert wurden. Die Änderungen eliminierten einen Teil der systematischen Fehler von stellaren Parametern, die im Laufe dieser Arbeit gefunden wurden. Um Elementhäufigkeiten zu bestimmen, haben wir zwei verschiedene Prozessierungs-Pipelines entwickelt. Beide berechnen die Elementhäufigkeiten unter der Annahme von Sternatmosphären im lokalen thermischen Gleichgewicht (local thermal equilibrium, LTE). Die erste Pipeline berechnete Elemenhäufigkeiten anhand der Äquivalentbreiten von Absorptionslinien. Da diese Methode eine geringe Empfindlichkeit für die Elementhäufigeiten relativ zu Eisen erreichte, wurde sie ersetzt. Die neue Pipeline benutzt chi^2-Fits von Modellspektren an die beobachteten Spektren. Dank Ihrer Präzision wurde diese für die Erstellung des RAVE-Katalogs von Elementhäufigkeiten verwendet. Diese Pipeline liefert Elementhäufigkeiten mit einer Genauigkeit von ~0.2dex, während für Spektren mit 20>S/N>40 immerhin noch ~0.3dex Genauigkeit erreicht werden. Für die vorliegende Arbeit wurden für 217.358 Sterne die Häufigkeiten von sieben chemischen Elementen bestimmt. Mit diesen Daten wurde der radiale chemische Gradient unserer Milchstraße untersucht. Wir finden, dass Sterne mit kleinen vertikalen Geschwindigkeiten |W|, die also nahe der galaktischen Ebene bleiben, einen radialen Gradienten der Eisenhäufigkeit zeigen, der mit früheren Studien übereinstimmt (~-0.07 dex Kpc^-1), während Sterne mit großen |W|, also solche, die größere galaktische Höhen erreichen, einen progressiv flachere Gradienten zeigen. Die Gradienten der anderen Element folgen dem gleichen Trend. Das lässt darauf schließen, dass entweder die Durchmischung der galaktischen dicken Scheibe effizient arbeitet oder aber dass die dicke Scheibe aus interstellarer Materie gebildet wurde, die chemisch recht homogen war. Speziell fanden wir hunderte von Sternen, die zwar kinematisch als zur dicken Scheibe zugehörig klassifiziert werden können, die aber die typische chemische Zusammensetzung der dünnen Scheibe aufweisen. Einige wenige dieser Sterne wurden bereits von anderen Autoren entdeckt, aber ihre Herkunft bleibt immer noch unklar. Eine Möglichkeit ist, dass die Sterne der dünnen Scheibe kinematische geheizt werden, sodass sie effizienter radial gemischt werden, was die chemischen Gradienten verwischt und auch flacher macht. Alternativ dazu könnten diese Sterne einer "Übergangspopulation" angehören, welche hinsichtlich der Scheibenevolution die Verbindung zwischen der dünnen und der dicken Scheibe darstellt. Unsere Untersuchung zeigt, dass sich diese beiden Erklärungen gegenseitig nicht ausschließen. Künftige Nachspektroskopierung mit hoher Auflösung wird die Rolle dieser Sterne in der Entwicklungsgeschichte der galaktischen Scheibe aufklären. KW - Galaxie KW - Milchstraße KW - Spektroskopie KW - chemische Häufigkeiten KW - Galaxy KW - Milky Way KW - Spectroscopy KW - Chemical Abundances Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52478 ER -